Spelling suggestions: "subject:"aleckson algebra"" "subject:"erickson algebra""
1 |
Digraph Algebras over Discrete Pre-ordered GroupsChan, Kai-Cheong January 2013 (has links)
This thesis consists of studies in the separate fields of operator algebras and non-associative algebras. Two natural operator algebra structures, A ⊗_max B and A ⊗_min B, exist on the tensor product of two given unital operator algebras A and B. Because of the different properties enjoyed by the two tensor products in connection to dilation theory, it is of interest to know when they coincide (completely isometrically). Motivated by earlier work due to Paulsen and Power, we provide conditions relating an operator algebra B and another family {C_i}_i of operator algebras under which, for any operator algebra A, the equality A ⊗_max B = A ⊗_min B either implies, or is implied by, the equalities A ⊗_max C_i = A ⊗_min C_i for every i. These results can be applied to the setting of a discrete group G pre-ordered by a subsemigroup G⁺, where B ⊆ C*_r(G) is the subalgebra of the reduced group C*-algebra of G generated by G⁺, and C_i = A(Q_i) are digraph algebras defined by considering certain pre-ordered subsets Q_i of G.
The 16-dimensional algebra A₄ of real sedenions is obtained by applying the Cayley-Dickson doubling process to the real division algebra of octonions. The classification of subalgebras of A₄ up to conjugacy (i.e. by the action of the automorphism group of A₄) was completed in a previous investigation, except for the collection of those subalgebras which are isomorphic to the quaternions. We present a classification of quaternion subalgebras up to conjugacy.
|
2 |
Digraph Algebras over Discrete Pre-ordered GroupsChan, Kai-Cheong January 2013 (has links)
This thesis consists of studies in the separate fields of operator algebras and non-associative algebras. Two natural operator algebra structures, A ⊗_max B and A ⊗_min B, exist on the tensor product of two given unital operator algebras A and B. Because of the different properties enjoyed by the two tensor products in connection to dilation theory, it is of interest to know when they coincide (completely isometrically). Motivated by earlier work due to Paulsen and Power, we provide conditions relating an operator algebra B and another family {C_i}_i of operator algebras under which, for any operator algebra A, the equality A ⊗_max B = A ⊗_min B either implies, or is implied by, the equalities A ⊗_max C_i = A ⊗_min C_i for every i. These results can be applied to the setting of a discrete group G pre-ordered by a subsemigroup G⁺, where B ⊆ C*_r(G) is the subalgebra of the reduced group C*-algebra of G generated by G⁺, and C_i = A(Q_i) are digraph algebras defined by considering certain pre-ordered subsets Q_i of G.
The 16-dimensional algebra A₄ of real sedenions is obtained by applying the Cayley-Dickson doubling process to the real division algebra of octonions. The classification of subalgebras of A₄ up to conjugacy (i.e. by the action of the automorphism group of A₄) was completed in a previous investigation, except for the collection of those subalgebras which are isomorphic to the quaternions. We present a classification of quaternion subalgebras up to conjugacy.
|
3 |
Tópicos de álgebras alternativas / Topics in Alternative AlgebrasMunhoz, Marcos 23 February 2007 (has links)
São estudados alguns aspectos das álgebras alternativas, como o bar-radical de uma álgebra bárica alternativa e as identidades de grau 4 e 5 nas álgebras de Cayley-Dickson. Neste estudo fazemos uso da decomposição de Peirce e de diversas propriedades importantes das álgebras alternativas. Concluímos mostrando que as únicas identidades de grau 4 são as triviais e as de grau 5 são conseqüência de outras duas identidades conhecidas / We studied some aspects of alternative algebras, in special the bar radical of an alternative baric algebra and identities of degree 4 and 5 of Cayley-Dickson algebras. We made significant use of the Peirce decomposition and several properties of the alternative algebras, in order to show that the only identities of degree four are the trivial ones, and the identities of degree five are consequences of other two known identities.
|
4 |
Tópicos de álgebras alternativas / Topics in Alternative AlgebrasMarcos Munhoz 23 February 2007 (has links)
São estudados alguns aspectos das álgebras alternativas, como o bar-radical de uma álgebra bárica alternativa e as identidades de grau 4 e 5 nas álgebras de Cayley-Dickson. Neste estudo fazemos uso da decomposição de Peirce e de diversas propriedades importantes das álgebras alternativas. Concluímos mostrando que as únicas identidades de grau 4 são as triviais e as de grau 5 são conseqüência de outras duas identidades conhecidas / We studied some aspects of alternative algebras, in special the bar radical of an alternative baric algebra and identities of degree 4 and 5 of Cayley-Dickson algebras. We made significant use of the Peirce decomposition and several properties of the alternative algebras, in order to show that the only identities of degree four are the trivial ones, and the identities of degree five are consequences of other two known identities.
|
Page generated in 0.4943 seconds