Spelling suggestions: "subject:"cdc2"" "subject:"dc2""
11 |
Part 1 Design, Synthesis and Bioactivity of a Phosphorylated Prodrug for the Inhibition of Pin1; Part 2 Conformational Specificity of Cdc25c Substrate for Cdc2 Kinase using LC-MS/MSZhao, Song 18 January 2008 (has links)
The phosphorylation-dependent PPIase (peptidyl prolyl isomerase), Pin1 (Protein interacting with NIMA#1), has been found to regulate cell cycle through a simple conformational change, the cis-trans isomerization of phospho-Ser/Thr-Pro amide bonds. A variety of key cell cycle regulatory phosphoproteins, including Cdc25 phosphatase,Cdc27, p53 oncogene, c-Myc oncogene, Wee1 kinase, Myt1 kinase, and NIMA kinas, have been confirmed as substrates of Pin1. Pin1 was also observed to be overexpressed in a variety of cancer cell lines, and the inhibitors of Pin1 showed antiproliferative activities towards these cancer cells. These results implied that Pin1 might serve as a potential anti-cancer drug target. Besides, Pin1 has an important neuroprotective function and represents a potential new therapeutic agent for Alzheimer's disease.
In order to understand the interaction between Pin1 and Cdc25c and the role of Pin1 in the mechanism for the regulation of mitosis, two amide isosteres, Ser-Ψ[(Z)CH=C]-Pro-OH and Ser-Ψ[(E)CH=C]-Pro-OH were incorporated into two peptidomimetics derived from human Cdc25c. Phosphorylation of these two peptidomimetics by the incubation with Cdc2 was studied using LC-MS/MS technique. It was found that Cdc2 kinase was conformationally specific to its Cdc25c substrate. Only the trans conformer of Cdc25c at its Ser168-Pro position can be recognized and phosphorylated by Cdc2 kinase, thereby creating the binding site for Pin1.
In an effort to improve the cell permeability of the charged inhibitors of Pin1, bisPOM (pivaloyloxymethyl) prodrug moiety was introduced to mask the phosphate group of Fmoc-pSer-Ψ[(Z)CH=C]-Pro-(2)-N-(3)-ethylaminoindole, which is one inhibitor of Pin1. Fmoc-pSer-Ψ[(Z)CH=C]-Pro-(2)-N-(3)-ethylaminoindole and its bisPOM prodrug were synthesized efficiently starting with Boc-Ser-Ψ[(Z)CH=C]-Pro-OH in 24% and 12% yields respectively. The charged inhibitor showed a moderate inhibition towards Pin1 (IC50 = 28.3 μM). Its antiproliferative activity towards A2780 ovarian cancer cells (IC50 = 46.2 μM) was significantly improved by its bisPOM prodrug (IC50 = 26.9 μM), which is comparable to the IC50 of the charged inhibitor towards Pin1 enzymatic activity. These results not only established the bisPOM strategy as an efficient prodrug choice for Pin1 inhibitors, but also added additional evidence for Pin1 as a potential anticancer drug target. / Ph. D.
|
12 |
Regulation of DNA Replication Origins in Fission Yeast: A DissertationKommajosyula, Naveen 03 August 2009 (has links)
Cells need to complete DNA replication in a timely and error-free manner. To ensure that replication is completed efficiently and in a finite amount of time, cells regulate origin firing. To prevent any errors from being transmitted to the next generation, cells have the checkpoint mechanism.
The S-phase DNA damage slows replication to allow the cell to repair the damage. The mechanism of replication slowing by the checkpoint was not clear in fission yeast, Schizosaccharomyces pombe, at the start of my thesis. The downstream targets of the DNA damage checkpoint in fission yeast were also unclear. I worked on identifying the downstream targets for the checkpoint by studying if Cdc25, a phosphatase, is a target of the checkpoint.
Work from our lab has shown that origin firing is stochastic in fission yeast. Origins are also known to be inefficient. Inefficient origins firing stochastically would lead to large stretches of chromosome where no origins may fire randomly leading to long replication times, an issue called the random gap problem. However, cells do not take a long time to complete replication and the process of replication itself is efficient. I focused on understanding the mechanism by which cells complete replication and avoid the random gap problem by attempting to measure the firing efficiency of late origins.
Genome-wide origin studies in fission yeast have identified several hundred origins. However, the resolution of these studies can be improved upon.
I began a genome-wide origin mapping study using deep sequencing to identify origins at a greater resolution compared to the previous studies. We have extended our origin search to two other Schizosaccharomyces species- S. octosporus and S. japonicus.There have been no origin mapping studies on these fission yeasts and identifying origins in these species will advance the field of replication.
My thesis research shows that Cdc25 is not a target of the S-phase DNA damage checkpoint. I showed that DNA damage checkpoint does not target Cdc2-Y15 to slow replication. Based on my preliminary observation, origin firing might be inhibited by the DNA damage checkpoint as a way to slow replication. My efforts to measure the firing efficiency of a late replicating sequence were hindered by potentially unidentified inefficient origins firing at a low rate and replicating the region being studied. Studying the origin efficiency was maybe further complicated by neighboring origins being able to passively replicate the region. To identify origins in recently sequenced Schizosaccharomyces species, we initiated the genome-wide origin mapping. The mapping was also done on S. pombe to identify inefficient origins not mapped by other mapping studies. My work shows that deep sequencing can be used to map origins in other species and provides a powerful tool for origin studies.
|
Page generated in 0.0216 seconds