• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular diversity in the Notch receptor family /

Beatus, Paul, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2001. / Härtill 4 uppsatser.
2

Generation and characterization of induced neural cells from fibroblasts by defined factors.

January 2011 (has links)
Tse, Chi Lok. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 116-131). / Abstracts in English and Chinese. / Declaration --- p.i / Abstract --- p.iii / Abstract in Chinese --- p.v / Acknowledgements --- p.vi / Table of Contents --- p.vii / List of Figures --- p.X / List of Tables --- p.xii / List of Abbreviations --- p.xiii / Chapter CHAPTER 1 --- General Introduction / Chapter 1.1 --- Regenerative Medicine --- p.1 / Chapter 1.2 --- Embryonic Stem Cells and Reprogramming --- p.3 / Chapter 1.3 --- Transdifferentiation --- p.6 / Chapter 1.4 --- The Cerebellum --- p.7 / Chapter 1.4.1 --- Functions of the cerebellum --- p.7 / Chapter 1.4.2 --- Structure and organization of the cerebellum --- p.8 / Chapter 1.4.3 --- Principle cellular components in the cerebellum --- p.12 / Chapter 1.4.3.1 --- Purkinje cells --- p.12 / Chapter 1.4.3.2 --- Granule cells --- p.12 / Chapter 1.4.3.3 --- Mossy fibres --- p.13 / Chapter 1.4.3.4 --- Climbing fibres --- p.13 / Chapter 1.4.3.5 --- Deep cerebellar nuclei --- p.13 / Chapter 1.4.3.6 --- Other cerebellar neurons --- p.14 / Chapter 1.4.3.7 --- Neuroglia of the cerebellum --- p.16 / Chapter 1.4.4 --- Circuitry of the cerebellum --- p.17 / Chapter 1.5 --- Development of the Cerebellum --- p.21 / Chapter 1.5.1 --- Anatomical changes during cerebellar development --- p.21 / Chapter 1.5.2 --- Molecular control of cerebellar development --- p.25 / Chapter 1.5.2.1 --- Specification of the cerebellar region --- p.25 / Chapter 1.5.2.2 --- Neurogenesis from the ventricular zone --- p.26 / Chapter 1.5.2.3 --- Neurogenesis from rhombic lip --- p.29 / Chapter 1.6 --- Scope of the Thesis --- p.33 / Chapter CHAPTER 2 --- Materials and General Methods / Chapter 2.1 --- Materials for Molecular Biological Work --- p.35 / Chapter 2.1.1 --- Enzymes --- p.35 / Chapter 2.1.2 --- Chemicals and others --- p.35 / Chapter 2.1.3 --- Plasmid vectors and plasmid --- p.36 / Chapter 2.1.4 --- Solutions and media --- p.36 / Chapter 2.2 --- Materials for Tissue/Cell Culture --- p.38 / Chapter 2.2.1 --- Chemicals --- p.38 / Chapter 2.2.2 --- Culture media and solutions --- p.38 / Chapter 2.2.3 --- Culture cells --- p.39 / Chapter 2.3 --- Animals --- p.40 / Chapter 2.4 --- Materials for Immunocytochemistry --- p.40 / Chapter 2.5 --- Oligonucleotide Primers --- p.41 / Chapter 2.6 --- RNA Extraction --- p.44 / Chapter 2.7 --- Generation of cDNA from mRNA --- p.44 / Chapter 2.8 --- Preparation of Recombinant Plasmid DNA --- p.45 / Chapter 2.8.1 --- Small scale preparation of DNA --- p.45 / Chapter 2.8.2 --- QLAGEN plasmid midiprep kit method --- p.46 / Chapter 2.9 --- Preparation of Specific DNA Fragment from Agarose Gel --- p.46 / Chapter 2.10 --- Subcloning of DNA Fragments --- p.47 / Chapter 2.10.1 --- Preparation of cloning vectors --- p.47 / Chapter 2.10.2 --- Subcloning of DNA fragment --- p.48 / Chapter 2.10.3 --- Transformation of DNA into competent cells --- p.48 / Chapter 2.11 --- Preparation of Competent Cells --- p.48 / Chapter CHAPTER 3 --- Generation and Characterization of Induced Neurons / Chapter 3.1 --- Introduction --- p.50 / Chapter 3.2 --- Experimental Procedures --- p.51 / Chapter 3.2.1 --- Construction of expression vector --- p.51 / Chapter 3.2.1.1 --- Preparation of insert DNA --- p.51 / Chapter 3.2.1.2 --- Construction of entry vector --- p.52 / Chapter 3.2.1.3 --- Construction of destination vector --- p.52 / Chapter 3.2.1.4 --- Construction of expression vector --- p.52 / Chapter 3.2.2 --- Generation of induced neural cells --- p.57 / Chapter 3.2.2.1 --- Culture of mouse embryonic fibroblasts (MEF) --- p.57 / Chapter 3.2.2.2 --- Production of expression vector containing retroviruses --- p.57 / Chapter 3.2.2.3 --- Transfection and induction of neural fate of MEF --- p.57 / Chapter 3.2.3 --- Immunocytochemcial analysis --- p.58 / Chapter 3.2.4 --- Efficiency calculation --- p.59 / Chapter 3.3 --- Results --- p.62 / Chapter 3.3.1 --- A screen for cerebellar Purkinje and granule cell fate-inducing factors --- p.62 / Chapter 3.3.2 --- Characterization of the induced neurons --- p.67 / Chapter 3.3.2.1 --- Granule cell induction --- p.67 / Chapter 3.3.2.2 --- Purkinje cell induction --- p.71 / Chapter 3.4 --- Discussion --- p.102 / Chapter 3.4.1 --- Roles of inducing factors in Purkinje cells and granule cells development --- p.102 / Chapter 3.4.2 --- Mechanism of neural transdifferentiation --- p.107 / Chapter CHAPTER 4 --- Future Directions / Chapter 4.1 --- Complete Induction of Purkinje Cell Fate --- p.111 / Chapter 4.2 --- Induced Neurons of Different Subtypes --- p.112 / Chapter 4.3 --- Mechanism of Transdifferentiation --- p.114 / Chapter 4.4 --- Transdifferentiation and Regenerative Medicine --- p.114 / Bibliography --- p.116
3

Functional characterization of CRMP1 in the epithelial-mesenchymal transition regulation in prostate cancer. / CRMP1在前列腺癌上皮-间质转化中的功能研究 / CUHK electronic theses & dissertations collection / CRMP1 zai qian lie xian ai shang pi- jian zhi zhuan hua zhong de gong neng yan jiu

January 2013 (has links)
Cai, Ganhui. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 160-192). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
4

Pyk2: Potential Regulator of Post Menopausal Bone Loss

Largura, Heather January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Pyk2: Potential Regulator of Post-Menopausal Bone Loss H.W. LARGURA1,2*, P. ELENISTE2, S. HUANG2, S. LIU1, M. ALLEN3, A. BRUZZANITI2. 1Indiana University School of Dentistry Department Orthodontics and Oral Facial Development, 2Indiana University School of Dentistry Department of Oral Biology, 3Indiana University School of Medicine Department of Anatomy and Cell Biology, Indianapolis, Indiana, USA Osteoporosis is a pathologic condition of bone, commonly found in post-menopausal women, which occurs from an imbalance between bone formation and resorption. Following menopause, the bone resorbing activity of osteoclasts exceeds bone formation by osteoblasts, resulting in decreased trabecular and cortical bone and a subsequent decrease in bone mass. Reduced bone mass increases the risk of pathologic fracture of bones. Due to adverse effects associated with current treatment protocols for bone loss, alternative treatment modalities with reduced adverse effects are needed. Estrogen plays a role in maintaining balance in the bone remodeling cycle by controlling remodeling activation, osteoblast and osteoclast numbers, and their respective effectiveness in formation and resorption. With declining estrogen levels, this elegantly balanced interaction is altered and bone resorption exceeds bone formation, resulting in bone loss and increased bone fragility. Pyk2 is a protein tyrosine kinase that plays an important role in regulating bone resorption by osteoclasts, as well as osteoblast proliferation and differentiation. Deletion of the Pyk2 gene in mice leads to an increase in bone mass, in part due to dysfunctional osteoclast and osteoblast activity. In this study, we examined the role of Pyk2 in the effects of estrogen on bone mass. We used wild type (WT) and Pyk2 knock-out (KO) mice that had been ovariectomized (OVX) and treated with or without estrogen (E2)-releasing pellets. Control mice included sham OVX surgery receiving placebo pellet. We found that deletion of Pyk2 conferred increased bone mass in sham, OVX and OVX+E2 mice. In addition, Pyk2 KO mice supplemented with 17estradiol exhibited a marked increase in bone volume/trabecular volume, trabecular number, and trabecular thickness, but not cortical bone parameters compared to WT mice. Results of this study provide evidence for the role of Pyk2 in the effects of estrogen on bone mass. Understanding the role of Pyk2 in bone could lead to the development of new pharmaceutical targets for the treatment of bone loss associated with osteoporosis.
5

Remodeling of three-dimensional organization of the nucleus during terminal keratinocyte differentiation in the epidermis

Gdula, M. R., Poterlowicz, K., Mardaryev, A. N., Sharov, A. A., Peng, Y., Fessing, M. Y., Botchkarev, V. A. January 2013 (has links)
The nucleus of epidermal keratinocytes (KCs) is a complex and highly compartmentalized organelle, whose structure is markedly changed during terminal differentiation and transition of the genome from a transcriptionally active state seen in the basal and spinous epidermal cells to a fully inactive state in the keratinized cells of the cornified layer. Here, using multicolor confocal microscopy, followed by computational image analysis and mathematical modeling, we demonstrate that in normal mouse footpad epidermis, transition of KCs from basal epidermal layer to the granular layer is accompanied by marked differences in nuclear architecture and microenvironment including the following: (i) decrease in the nuclear volume; (ii) decrease in expression of the markers of transcriptionally active chromatin; (iii) internalization and decrease in the number of nucleoli; (iv) increase in the number of pericentromeric heterochromatic clusters; and (v) increase in the frequency of associations between the pericentromeric clusters, chromosomal territory 3, and nucleoli. These data suggest a role for nucleoli and pericentromeric heterochromatin clusters as organizers of nuclear microenvironment required for proper execution of gene expression programs in differentiating KCs, and provide important background information for further analyses of alterations in the topological genome organization seen in pathological skin conditions, including disorders of epidermal differentiation and epidermal tumors.

Page generated in 0.0975 seconds