• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 173
  • 14
  • 12
  • 11
  • 11
  • 9
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 447
  • 447
  • 394
  • 217
  • 172
  • 169
  • 161
  • 111
  • 103
  • 71
  • 52
  • 52
  • 47
  • 43
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Antibody-mediated rejection of arterialised venous allografts is inhibited by immunosuppression in rats

Splith, Katrin, Jonas, Sven 14 March 2014 (has links) (PDF)
We determined in a rat model (1) the presence and dynamics of alloantibodies recognizing MHC complexes on quiescent Brown-Norway (BN) splenic cells in the sera of Lewis (LEW) recipients of Brown-Norway iliolumbar vein grafts under tacrolimus immunosuppression; and (2) the presence of immunoglobulins in the wall of acute rejected vein allografts.
112

Generation of tolerogenic human DC through Rapamycin conditioning and genetic modification with HLA-G.

Fedoric, Boris January 2009 (has links)
Dendritic cells (DC) are potent antigen presenting cells involved in the initiation of the alloimmune response and organ transplant rejection. This thesis, has investigated pharmacological and genetic approaches to manipulate DC in order to generate tolerogenic DC which elicit poor allostimulatory activity as potential cell therapy agents to treat allograft rejection. In the first aspect of this study, human monocyte-derived DC were used to study the influence of Rapamycin (RAPA) on DC phenotype and function. This study showed that RAPA when added to monocytes prior to DC differentiation or after DC maturation generated tolerogenic DC as evidenced by the ability of these cells to induce T cell hyporesponsiveness. However, T cell hyporesponsiveness was associated with downregulation of costimulatory molecules only when added prior to differentiation and surprisingly was not influenced by the induction of CD4 ⁺FoxP3 ⁺ T cells. To assess the effects of RAPA on DC function in the transplant setting an in vivo chimeric model of ovine vascularised skin allograft transplantation was established in immunocompromised NOD/SCID mice as a host. This model was established as a preliminary model to acquire in vivo data prior to testing the effect of pharmacologically modified DC in the preclinical ovine model of renal allograft transplantation, also established in the host laboratory. Firstly, comparison of ovine DC obtained from cannulation of the prefemoral lymphatic vessels in sheep demonstrated that RAPA-modified ovine DC acted as poor stimulators of allogeneic ovine T cells similar to human DC treated with RAPA. Secondly, in NOD/SCID mice engrafted with ovine skin, the infusion of allogeneic ovine T cells together with RAPA-modified ovine DC reduced histological rejection in comparison to control DC. In the second aspect of this study, the effects of genetic manipulation of DC were investigated. In order to investigate the effects of genetic modification of DC, two isoforms of the human HLA-G molecule, HLA-G1 (membrane bound) and HLA-G5 (soluble isoform) were used to generate adenoviral vectors. Unexpectedly, both HLA-G isoforms expressed by human DC transfectants were unable to induce allogeneic T cell hyporesponsiveness in the mixed lymphocyte reaction (MLR). Surprisingly, in the MLR the allogeneic T cells acquired HLA-G1, but not HLA-G5, indicating that direct cell contact and membrane transfer from DC to T cells occurred (Trogocytosis). In addition to HLA-G1, costimulatory molecules (CD40, CD80, CD86 and MHC Class II) were also cotransferred from DC to allogeneic T cells. Accordingly, in secondary proliferation assays T cells immunoselected after co-culture with allogeneic untransfected DC (TUT) demonstrated potent antigen presenting activity when used as stimulators of autologous T cells (analogous to the indirect pathway of antigen presentation). In contrast to TUT, immunoselected T cells that acquired HLA-G1 (THLA-G1) upon co-culture with DCtransfectants showed poor stimulatory capacity. Thus the data reported in this thesis supports the proposed novel concept that HLA-G acquired by T cells through genetically modified DC, functions to autoregulate T cells via T-T cell interaction through the HLA-G receptor ILT2 (negative signalling receptor) expressed on T cells. In conclusion, this thesis has firstly provided supportive evidence that the pharmacological modification of human and ovine DC with RAPA has potential therapeutic effects on allograft rejection. Secondly, the genetic modification of DC to induce expression of HLA-G has specifically allowed the transfer of this molecule to T cells by trogocytosis and the inhibition of alloreactive T cell expansion. / Thesis (Ph.D.) -- University of Adelaide, School of Medicine, 2009
113

Depletion of Dendritic Cells to Prevent Acute Graft Versus Host Disease.

John Wilson Unknown Date (has links)
Acute graft versus host disease (aGVHD) affects more than 40% of patients undergoing haematopoietic stem cell transplantation. aGVHD occurs after transplantation of donor haematopoietic cells into hosts incapable of rejecting the donor cells, when donor T cells attack host tissue. Despite extensive efforts, aGVHD remains problematic to prevent and difficult to control. Current therapies to prevent aGVHD induce profound immunosuppression, leaving patients at increased risk of infection and leukaemic relapse. Dendritic cells (DC) are professional antigen presenting cells of haematopoietic origin and are the primary stimulators of the immune system, uniquely being able to activate naïve T cells. A growing body of evidence suggests that DC are responsible for the stimulation of the donor T cells which cause aGVHD. I have used a model of aGVHD which utilizes conditioned severe combined immunodeficient mice transplanted with human peripheral blood mononuclear cells (PBMC). In this model human CD4+ T cells appear to be responsible for an aGVHD-like syndrome which results in death 15-30 days post transplant. I have shown, using in vitro depletion of individual populations, that other subpopulations of human PBMC did not affect the survival of the mice. I have also demonstrated that human DC are required for the induction of aGVHD in the majority of mice. This novel finding validated the use of this model to test the primary hypothesis; that antibody mediated depletion of DC would prevent aGVHD. The murine IgM monoclonal antibody (Mab), CMRF-44 Mab, is specific for an unknown molecule expressed on the surface of activated human DC. Previous work had shown that when mixed lymphocyte reaction stimulator cells were depleted of CMRF-44+ cells, there was a significant reduction in the proliferation of responder cells. Here I tested the efficacy of CMRF-44 as a therapy for the prevention of aGVHD in the model. CMRF-44 Mab did not improve survival of mice treated with human PBMC, despite recent data showing that CMRF-44 expression on DC was predictive of aGVHD in patients. In vitro depletion of CMRF-44+ cells from human PBMC prior to transplantation also did not reduce incidence of aGVHD. An alternate target for the depletion of human DC was CD83 which is also expressed on the surface of activated human DC. I generated a rabbit polyclonal antibody using a human CD83 fusion protein, which was then affinity purified in a multi-step process which yielded only antibody specific for human CD83. Treatment with this antibody greatly improved survival of transplanted mice. Further experiments showed that anti-CD83 treatment did not abrogate human leucocytes including CD8+ memory T cells suggesting that a therapy using an anti-CD83 antibody has the potential to prevent aGVHD without the immunosuppression associated with current anti-aGVHD therapies. The work described here has validated the use of a human mouse chimeric model as an in vivo assay of human DC function and shown that targeting CD83 has the potential to reduce the incidence of clinical aGVHD whilst preserving donor memory T cells.
114

Haematopoietic stem cell transplantation: Evaluation of a patient and carer psychoeducation programme

Wallbank, Kathleen L January 2009 (has links)
Master of Science / Haematopoietic stem cell transplantation (HSCT) is a complicated and high-risk procedure used to cure disease or stop the spread of disease in a range of cancers. HSCT carries a high incidence of mortality and is associated with distressing short and long-term side effects. In addition, patients remain at risk of recurrence or mortality years after transplantation. Therefore, patients undergoing HSCT have been found to experience significant emotional and psychosocial distress because of the trauma associated with treatment. The literature suggests that about 50% of HSCT patients will experience clinical levels of distress. Carers and family members play an important role in caring for these ill patients in the short and long-term. Major role changes and financial stressors are experienced in many families, adding to the burden of care. However, very little is known about the rates of psychopathology in carers of HSCT patients. Due to the arduous nature of HSCT, psycho-educational programmes have been developed by major transplant centres and hospitals in order to provide HSCT patients and their families with information on the treatment process, side effects, risks, and long-term outcomes. Research on patient education in oncology has shown that providing patients and carers with information about their illness and treatment reduces anxiety and distress. To date, there have been no empirical evaluations to support the use of education programmes for HSCT patients. While it could be assumed that information would be helpful in reducing anxiety and depression in HSCT as it is in oncology generally, the information provided to these patients is usually more confronting and therefore, may be less reassuring. Thus, it is not known whether providing patients with education about HSCT reduces patient and carer distress or whether it might actually increase adverse outcomes. The aim of the present study was to evaluate the rates and correlates of distress in carers and patients and examine the effect of a psychoeducation programme for patients undergoing HSCT and their carers on knowledge, distress, information satisfaction, social support and caregiver burden. A randomised control trial was conducted to provide empirical data in relation to the latter aim. The following hypotheses were proposed. Firstly, it was hypothesised that patients and carers who received the education programme would have higher levels of knowledge, not evidenced in a group waiting to receive the programme. Secondly, it was hypothesised that the education program would not lead to increased anxiety and depressive symptoms. Thirdly, patients who know more about their condition would be the least distressed. As predicted, this study found high levels of distress, particularly in carers. Higher patient distress was related to having more concern about one’s illness and experiencing more symptoms. Education was effective in increasing patient and carer knowledge. Importantly there were no adverse effects of knowledge and greater patient knowledge following the education program was associated with less distress, although there was no direct effect of education on distress. Future research should aim to identify what aspects of the education program are helpful to patients. Finally, support interventions such as CBT are needed to help patients and carers, in particular, cope with the high levels of distress inherent in the HSCT experience.
115

Olfactory ensheathing glia : an investigation of factors affecting responsiveness of these cells in vitro and in vivo

De Mello, Thalles R. B. January 2006 (has links)
[Truncated abstract] Olfactory ensheathing glia (OEG) have been demonstrated to improve functional and anatomical outcomes after injury to the nervous system and are currently being trialled clinically. This thesis presents the investigation of two important issues in OEG biology. The first study (Chapter 2) investigates effects of different members of the neuregulin (NRG) family of molecules on the proliferation of OEG, as a means of quickly obtaining large numbers of cells for clinical or experimental use. We report that NRG-1β, but not NRG- 2α or NRG-3, has a significant proliferative effect. Furthermore, we report for the first time that use of different mitogens (forskolin and pituitary extract) commonly used to expand these cells in vitro, can have a significant effect on the responsiveness of OEG to added NRG in subsequent mitogenic assays. OEG grown initially with forskolin and pituitary extract exhibited increased basal proliferation rates in comparison to OEG originally expanded without these factors, and this increased rate of proliferation was sustained for at least 6 days following their withdrawal from the culture medium. We also report for the first time the expression pattern of ErbB2, ErbB3 and ErbB4 receptors on p75-selected OEG, and investigate their contribution to the NRG mitogenic effect by the use of inhibitory ErbB antibodies. Our second study (Chapter 3) seeks to clarify the role of OEG in promoting myelination of central nervous system neurons. In this study we have investigated the myelinating ability of OEG derived from embryonic (EEG), postnatal (PEG) and adult tissue (AEG) both in vitro and in vivo. OEG selected by p75-immunopanning were co-cultured with dissociated cultures of TrkA-dependant embryonic dorsal root ganglion (DRG) neurons. EEG, but not AEG or PEG, successfully myelinated DRG neurons in the presence of serum and/or ascorbate. AEG also failed to myelinate GDNF-dependant embryonic DRG cultures, and growth factor-independent adult DRG cultures. Transplantation of OEG into lysolecithin demyelinated spinal cord demonstrated distinct ultrastructural differences between transplants of OEG derived from animals of different ages. Furthermore, we demonstrate that clearance of degraded myelin from the lesion site appears to be more effective when animals are transplanted with EEG rather than AEG or Schwann cell preparations. These results suggest that myelinating potential of OEG in vitro and behaviour of these cells following transplantation in vivo are developmentally regulated.
116

Human neural precursor cells in spinal cord repair /

Piao, Jinghua, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
117

Adult human neural stem cells : properties in vitro and as xenografts in the spinal cord /

Westerlund, Ulf, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 5 uppsatser.
118

Immune modulation by mesenchymal stem cells /

Rasmusson, Ida, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 5 uppsatser.
119

Experimental studies of human fetal liver cells : in regard to in utero hematopoietic stem cell transplantation /

Lindton, Bim, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 5 uppsatser.
120

Quality of life in patients with malignant blood disorders : a clinical and methodological study /

Wettergren, Lena, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 4 uppsatser.

Page generated in 0.1176 seconds