• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The recognition of MHC Class I molecules by foetal NK cells

Toomey, Jennifer January 1999 (has links)
No description available.
2

Engineered human hepatocyte growth factor for pharmaceutical studies

Cheng, Hsiu-Ling 21 July 2005 (has links)
Hepatocyte growth factor (HGF) is a multifunctional protein, which secrets via Golgi complex after synthesized, and is hydrolyzed into an active heterodimer containing an £\ and a £] chain by extracellular protease. It is known that HGF functions through surface domain of Met, and thus induces mitosis and metastasis. The interaction domain of HGF is believed to be located in the £\-chain. In order to study these findings structurally and functionally, we designed and constructed four different recombinant coding regions of the gene (NK1, NK2, NK3, and NK4) which was then successfully expressed in E. coli. Purification of these four different recombinant proteins with glutathione-agarose column showed that all of the four constructs had been successfully expressed with some degradations. Cell proliferation assay showed that the recombinant proteins inhibited the growth of breast cancer cells to some extent. The assay also showed that GST-NK1 and GST-NK2 were better inhibitors than GST-NK3 and GST-NK4 to the cancer cells. It is concluded that E. coli expression is an appropriate system for achieving functional HGF.
3

Development of High-throughput and Robust Microfluidic Live Cell Assay Platforms for Combination Drug and Toxin Screening

Wang, Han 2011 December 1900 (has links)
Combination chemotherapies that introduce multi-agent treatments to target cancer cells are emerging as new paradigms to overcome chemotherapy resistance and side effects involved with conventional monotherapies. In environmental toxicology, characterizing effects of mixtures of toxins rather than simply analyzing the effect of single toxins are of significant interest. In order to determine such combination effects, it is necessary to systematically investigate interactions between different concentration-dependent components of a mixture. Conventional microtiter plate format based assays are efficient and cost-effective, however are not practical as the number of combinations increases drastically. Although robotic pipetting systems can overcome the labor-intensive and time-consuming limitations, they are too costly for general users. Microfluidic live cell screening platforms can allow precise control of cell culture microenvironments by applying accurate doses of biomolecular mixtures with specific mixing ratios generated through integrated on-chip microfluidic gradient generators. This thesis first presents a live cell array platform with integrated microfluidic network-based gradient generator which enables generation and dosing of 64 unique combinations of two cancer drugs at different concentrations to an 8 by 8 cell culture chamber array. We have developed the system into a fully automated microfluidic live cell screening platform with uniform cell seeding capability and pair-wise gradient profile generation. This platform was utilized to investigate the gene expression regulation of colorectal cancer cells in response to combination cancer drug treatment. The resulting cell responses indicate that the two cancer drugs show additive effect when sequential drug treatment scheme is applied, demonstrating the utility of the microfluidic live cell assay platform. However, large reagent consumption and difficulties of repeatedly generating the exact same concentrations and mixture profiles from batch to batch and device to device due to the fact that the generated gradient profiles or mixing ratios of chemicals have to rely on stable flow at optimized flow rate throughout the entire multi-day experiment limit the widespread use of this method. Moreover, producing three or more reagent mixtures require complicated microchannel structures and operating procedures when using traditional microfluidic network-based gradient generators. Therefore, an on-demand geometric metering-based mixture generator which facilitates robust, scalable, and accurate multi-reagent mixing in a high-throughput fashion has been developed and incorporated with a live cell array as a microfluidic screening platform for conducting combination drug or toxin assays. Integrated single cell trapping array allowed single cell resolution analysis of drugs and toxin effects. Reagent mixture generation and precise application of the mixtures to arrays of cell culture chambers repeatedly over time were successfully demonstrated, showing significantly improved repeatability and accuracy than those from conventional microfluidic network-based gradient generators. The influence of this improved repeatability and accuracy in generating concentration specified mixtures on obtaining more reliable and repeatable biological data sets were studied.
4

Forensic taphonomy : investigating the post mortem biochemical properties of cartilage and fungal succession as potential forensic tools

Bolton, Shawna N. January 2015 (has links)
Post mortem interval (PMI – the time elapsed since death and discovery) is important to medicolegal investigations. It helps to construct crucial time lines and assists with the identification of unknown persons by inclusion or exclusion of a suspect’s known movements. Accurate methodologies for establishing PMI are limited to about 48-hours. Such methods involve use of increasing levels of potassium in vitreous humour, and algor mortis. This study is two-fold. Firstly, it explores the biomolecular changes in degrading porcine cartilage buried in soil environments and its potential to determine PMI in the crucial two days to two months period. Trotters were interred in a number of graves at two distinct locations exhibiting dissimilar soil environments. Weekly disinterments (for 6 weeks) resulted in dissection for cartilage samples which were processed for protein immunoblot analyses and cell vitality assays. Results demonstrate that aggrecan, a major structural proteoglycan, produces high (230kDa) and low (38kDa) molecular weight cross-reactive polypeptides (CRPs) within cartilage extracellular matrix. The 230kDa CRP degrades in a reproducible manner irrespective of the different soil environments utilised. As PMI increases, aggrecan diminishes and degrades forming heterogeneous subpopulations with time. Immunodetection of aggrecan ceases when joint exposure to the soil environment occurs. At this time, aggrecan is metabolised by soil microbes. The molecular breakdown of cartilage proteoglycans has potential for use as a reliable indicator of PMI, irrespective of differing soil environments, beyond the 48-hours period. Likewise, vitality assays also demonstrated viable chondrocytes for as long as 35 PM days. The second component of this study examined the fungal activity associated with trotters buried below ground. Results indicate that fungal growth was considerably influenced by soil chemistry and changes in the environment. Fungal colonisation did not demonstrate temporal patterns of succession. The results of this study indicate that cartilage has the potential to prolong PMI determination well beyond the current 48- and 100-hour limitations posed by various other soft tissue methods. Moreover, the long-term post mortem viability of chondrocytes presents an opportunity to explore DNA extraction from these cells for the purpose of establishing a positive identification for unidentified remains. On the contrary, the growth and colonisation patterns of post putrefactive fungi in relation to decomposing porcine trotters proved to be futile for estimating PMI. Therefore, fungi may not be a suitable candidate for evaluating PMI during the early phase fungal activity.
5

Probing reaction conditions and cofactors of conformational prion protein changes underlying the autocatalytic self-propagation of different prion strains

Boerner, Susann 15 July 2014 (has links)
Prionen sind das infektiöse Agens transmissibler spongiformer Enzephalopathien von Tieren und Menschen. Prionen bestehen hauptsächlich aus einer abnormal gefalteten und aggregierten Isoform des zellulären Prionproteins (PrP). Die Replikation von Prionen findet mutmaßlich durch keiminduzierte Polymerisation des Prionproteins statt. Es existieren verschiedene Prionstämme, die unterschiedliche Eigenschaften aufweisen, aber vom selben zellulären Prionprotein abstammen können. Neben PrP scheinen Kofaktormoleküle an der Prionreplikation beteiligt zu sein. Weiterhin wird angenommen, dass Kofaktoren bei der Definition von Stammeigenschaften beteiligt sind, sowie ein Einfluss auf die Infektiosität von Prionen besteht. In dieser Arbeit wurden die Auswirkungen verschiedener Kofaktoren auf die Replikation von vier Hamster-adaptierten Prionstämmen in vitro mittels der Methode der „Protein Misfolding Cyclic Amplification“ (PMCA) untersucht. Es wurden stammabhängige Unterschiede bezüglich der Anforderungen an die Replikationsbedingungen in der PMCA, sowie Kofaktor-Selektivitäten festgestellt. Der Einfluss von Kofaktoren wurde durch den Vergleich ausgewählter biologischer, biochemischer und biophysikalischer Eigenschaften von in vitro erzeugten PMCA Produkten (PrPres) mit denen nativer Prionkeime untersucht. Es zeigte sich, dass Kofaktoren Stammeigenschaften, wie die biologische Keimaktivität in primären Gliazellkulturen und biochemische Eigenschaften, wie die Migration in SDS-Gelen, beeinflussen können. Um festzustellen, ob unterschiedliche Kofaktorbedingungen während der PMCA messbare Veränderungen der Proteinkonformation hervorrufen, wurde PMCA generiertes PrPres mittels FT-IR Spektroskopie in einer Pilotstudie charakterisiert. Erste Befunde zeigten spektrale Unterschiede zwischen den Proteinkeimen und deren PMCA Produkten bei allen Stämmen, unabhängig von den Kofaktorbedingungen. / Prions are the causative agent of transmissible spongiform encephalopathies in animals and humans such as scrapie, bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease (CJD). Prions are thought to be composed essentially of a misfolded and aberrantly aggregated isoform of the cellular prion protein (PrP) and to replicate by seeded PrP polymerization. Prions may exist in the form of distinct strains that differ in their phenotypic characteristics although they are derived from the same cellular prion protein. Cofactor molecules other than PrP may be involved in prion replication and may be a determinant of strain properties. Furthermore, cofactors may also be required for conveying infectivity. The present study examined the effects of different cofactor molecules on the replication efficacy of four hamster adapted prion agents using the method of serial protein misfolding cyclic amplification (PMCA) as in vitro assay for PrP misfolding and aggregation. The study revealed strain dependent differences of PMCA conditions and cofactors required for efficient in vitro replication. The impact of cofactors was assessed by comparative analyses of selected biological, biochemical and biophysical properties of PMCA products (PrPres) and native prion seeds. The biological seeding activity as monitored in a primary hamster glial cell assay, and biochemical properties such as electrophoretic migration in SDS-gels, were affected differently by different cofactors. In order to define the impact of putative cofactors on the molecular conversion of PrP in more detail, changes in the spatial structure associated with different cofactor molecule conditions during amplification of PrPres in PMCA was monitored by Fourier transform-infrared (FT-IR) spectroscopic analysis. Largely preliminary data revealed spectral differences between native prion seeds and progeny PMCA generated PrPres for all prion strains, but no variations due to different cofactor conditions.

Page generated in 0.0392 seconds