• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 377
  • 282
  • 33
  • 30
  • 23
  • 23
  • 12
  • 11
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 882
  • 882
  • 621
  • 233
  • 161
  • 141
  • 133
  • 114
  • 113
  • 113
  • 86
  • 81
  • 74
  • 72
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Melanocyte Colonization of an Oral Carcinoma

MODICA, L. A., Youngberg, George A., AVILA, F. O. 01 January 1990 (has links)
No description available.
52

A non-canonical Hippo signaling pathway regulates DeltaNp63 in cancer cells

Low Calle, Ana Maria January 2022 (has links)
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cancers, while its expression is often repressed in breast cancers. In the canonical conserved Hippo pathway, known to play a complex role in regulating the growth of cancer cells, the protein kinases Mammalian Ste20 like kinases 1/2 (MST) and Large tumor suppressor kinases 1/2 (LATS) act sequentially to phosphorylate and inhibit the Yes-associated Protein/Transcriptional coactivator PDZ binding transcription factors (YAP/TAZ). We found that in the MCF10A mammary epithelial cell line and insquamous and breast cancer cell lines, expression of deltaNp63 RNA and protein is strongly repressed by inhibition of specific components of the Hippo pathway in a manner that is independent of p53. While the Hippo pathway protein kinases MST1/2 and LATS1 are required for p63 expression, the next step of the pathway namely phosphorylation and degradation of the YAP/TAZ transcriptional activators, is not required for repression of p63. This suggests that regulation of p63 expression occurs by a non-canonical version of the Hippo pathway. Interestingly, we observed that experimentally lowering p63 expression leads to increased Yes Associated Protein protein levels, thereby constituting a feedback loop. In addition, p63 loss reduces the growth of MCF10A and squamous cancer cell lines. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells.
53

Molecular Analysis of Non-Melanoma Skin Cancer

Carless, Melanie, n/a January 2004 (has links)
Non-melanoma skin cancer (NMSC) is the most common cancer in the world with a lifetime risk for development as high as 2 in 3 in Queensland, Australia. Mortality is quite low, representing an approximate 360 deaths in Australia annually but cost of treatment is extremely high, estimated at $232 million each year. Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are the two most common forms of NMSC. Although BCC generally do not have the propensity to metastasise, they are highly invasive and can be locally destructive. SCC on the other hand is invasive and has metastatic potential. SCC is generally derived from a precursor lesion, solar keratosis (SK), which is also considered to be a biomarker of BCC, SCC and malignant melanoma. According to one theory, SKs actually represent the first recognisable stage of SCC development and therefore may be indicative of the earliest stage of NMSC development. In addition to these common forms of NMSC, rarer forms such as keratoacanthoma (KA), which spontaneously regress, and SCC in situ, which rarely become invasive, may provide clues into protective mechanisms associated with prevention of development. Like all other cancers, NMSC arises from an accumulation of genetic abnormalities that result in severe cellular dysfunction. A number of genes have been proposed in the development of NMSC, including p53, CDKN2a, Bcl-2 and the Ras family of genes, which are typically associated with proliferative and differentiation processes. Also, a number of genetic disorders that predispose individuals to NMSC have also been identified. Genetic abnormalities in these genes may be a result of somatic mutations that may be promoted by environmental carcinogens. For NMSC, ultraviolet (UV) radiation is the primary environmental stimulus that acts upon skin to generate mutations. UV effects are 2-fold; the first being direct damage produced by UVB radiation and the second being indirect damage as a result of UVA-induced oxidative stress. In addition to mutations of genes that directly result in carcinogenesis, polymorphic variants of genes may also play a role in susceptibility to NMSC. These susceptibility genes may have immunogenic, detoxifying or transcriptional roles that could be involved in increased mutagenesis or activation of cancer causing genes. The purpose of this study was ultimately to identify further molecular based mechanisms associated with the development of non-melanoma skin cancer. Initially, this study aimed to examine the effects of aberrant chromosomal regions on NMSC development and also to identify candidate genes within these regions that may be implicated in the development and progression of NMSC. Also, based on chromosomal and functional implications, a number of candidate genes were assessed using association analysis to determine their involvement in susceptibility to the earliest stages of NMSC development. Implicated susceptibility genes were then further investigated to determine their response to UV radiation. Therefore the methodological approach of these studies was based on three broad technical applications of cytogenetic, association and expression analyses. Previous comparative genomic hybridisation (CGH) studies implicated the 18q chromosomal region in progression of SK to SCC and this region was therefore suspected of harbouring one or more tumour suppressor genes that were associated with a more malignant phenotype. Following on from this analysis, loss of heterozygosity (LOH) analysis was used for further delineation of this region and possibly to implicate candidate genes involved in progression. Additionally, CGH was used to investigate keratoacanthoma to determine aberrant regions that might be involved in progression and also regression of this NMSC. Genes that had potential functional roles in NMSC development and that were located in or near regions implicated by these cytogenetic analyses were further investigated using association analysis. Association analysis was performed using polymerase chain reaction and subsequent restriction enzyme digestion or GeneScan analysis to determine genotype and allele frequencies in an SK affected versus control population for polymorphisms within a number of candidate genes. This population was carefully phenotyped so that not only genotypic factors could be analysed but also their interaction with a number of phenotypic and environmental risk factors. Genes with polymorphisms that did show association with solar keratosis development were then examined functionally. Specifically, gene expression analysis was undertaken to investigate their response to UV radiation. Both UVA only and combined UVA/UVB treatments were used for short term irradiation and also for long term irradiation with recovery to determine differential effects of UV range and dose in human skin. Relative mRNA expression analysis of these genes was performed using quantitative real time reverse transcription polymerase chain reaction to determine if UV radiation imposed gene expression changes in the skin. A combination of these methodologies provided a wide basis for investigation of NMSC. Cytogenetic, association and expression analyses all allow for the identification of molecular risk factors that cause or are associated with NMSC development and progression. These analyses provided diverse results that implicated various molecular mechanisms in the development of NMSC. Cytogenetic analysis is a powerful technique, especially for the identification of a broad range of aberrations throughout the genome. This study employed LOH analysis to investigate an implicated region involved in progression to SCC and to attempt identification of candidate genes that may be involved in this process. LOH analysis was successfully performed on 9 SCCs, 5 SCCs in situ and 2 SKs using 8 microsatellite markers within the 18q region. Polymerase chain reaction (PCR) was used to amplify polymorphic regions of these markers and genotypic composition was determined for normal and cancerous tissue within the specimen. In heterozygote individuals, determined by analysis of normal tissue, the cancerous tissue was examined to determine if alleles within the implicated region had been lost. However, after analysis of multiple different samples, there was no LOH detected in any of the samples examined for this analysis. This does not necessarily reject a role for 18q, or genes within this region, as the localisation of candidate tumour suppressor genes within a small region may indicate a tighter region of involvement than was expected. As such, a more targeted study may further delineate this region and implicate candidate genes in progression of SK to the more malignant phenotype of SCC. Further CGH analysis of keratoacanthoma was also undertaken to identify aberrations associated with development and also regression of this skin cancer. CGH was performed using universal amplification and nick translation to incorporate a fluorescent dye. Differentially labelled normal and tumour DNA were then competitively hybridised to a normal metaphase spread and fluorescence emission indicated either amplification or deletion of specific chromosomal regions. In total, 6 KA samples were analysed, with 2 samples each from evolving, matured and regressing stages of KA development. In general, regressing KAs appeared to be more highly associated with deleted regions than evolving and matured KAs. Specifically, the 15q chromosomal region that was deleted in regressing KAs but amplified in evolving or matured KAs, may be significantly involved in the process of KA regression. Also various candidate genes that were being considered for analysis were located in or near some of these implicated regions, including GSTM1, GSTP1 and SSTR2. As such, these candidate genes were targeted for further investigation. A number of susceptibility genes that were located in or near aberrant regions implicated in NMSC development were investigated using association analysis. These genes included members of the somatostatin receptor family (SSTR1 and SSTR2), members of the glutathione-S-transferase (GST) family (GSTM1, GSTT1, GSTP1 and GSTZ1) and the vitamin D receptor (VDR). Studies detected a number of interesting interactions between genetic, environmental and phenotypic factors in the development of the early stages of non-melanoma skin cancer. Additionally, genes implicated in NMSC development were further investigated using expression analysis to determine response to UV radiation. Association analysis was initially performed on members of the somatostatin receptor family. Somatostatin is a growth inhibiting factor, amongst other things, that mediates its actions through the somatostatin receptors (SSTRs). The presence of these receptors (SSTR1-5) in tumour cells indicates a potential for somatostatin to bind and suppress growth, as well as allowing for therapeutic treatment with somatostatin analogues. Additionally, expression of these receptors in normal tissue, including skin, should allow for potential protection against tumour growth. The genes for SSTR1 and SSTR2 have been shown to contain dinucleotide repeat polymorphisms, and although these polymorphisms may not directly result in altered expression or binding potential, they may be linked to another functional polymorphism that does. Using association analysis the SSTR1 and SSTR2 genes were investigated to determine whether they play a role in the development of solar keratosis. Results showed that there were no significant differences between SSTR1 and SSTR2 polymorphism frequencies in the tested solar keratosis population (P = 0.10 and P = 0.883, respectively) as compared to an unaffected population. Hence, these studies do not support a role for the SSTR1 or SSTR2 genes in solar keratosis development. Further association analysis and subsequent expression analysis was also performed on members of the glutathione-S-transferase family. The GST enzymes play a role in the detoxification of a number of carcinogens and mutagens, including those produced by UV-induced oxidative stress. This study examined the role of GSTM1, GSTT1, GSTP1 and GSTZ1 gene polymorphisms in susceptibility to SK development. Association analysis was performed to detect allele and genotype frequency differences in SK affected and control populations using PCR and restriction enzyme digestion. No significant differences were detected in GSTP1 and GSTZ1 allele or genotype frequencies, however polymorphisms within both genes were found to be in linkage disequilibrium, as previously reported, and a new allelic variant of the GSTZ1 gene was identified. Significant associations between GSTM1 (P = 0.003) and GSTT1 (P = 0.039) genotypes and SK development were detected, with the null variants of both genes conferring an approximate 2-fold increase in risk for solar keratosis development (OR: 2.1; CI: 1.3-3.5 and OR: 2.3; CI: 1.0-5.0 for GSTM1 and GSTT1, respectively). For the GSTM1 gene, this risk was significantly higher in conjunction with high outdoor exposure (OR: 3.4; CI: 1.9-6.3) and although the GSTT1 gene showed a similar trend (OR: 2.9; CI: 1.1-7.7), this did not reach significance. The increased risk of SK development associated with these genes is likely due to a decreased ability of the skin to detoxify mutagenic compounds produced by UV-induced oxidative stress, and hence a decreased ability to protect against carcinogenesis. Implication of the GSTM1 and GSTT1 null variants in solar keratosis development prompted interest in analysis of gene expression changes in response to UV radiation. Due to the high homology of the GSTM1 gene with other GSTM genes, and therefore potential issues with primer specificity, the GSTT1 gene was focussed on for the expression studies. Real time reverse transcription PCR, incorporating SYBR green fluorescence and 18S as a comparative gene, was used to study GSTT1 gene expression changes in response to both UVA and combined UVA/UVB radiation. It was found that only short term UV radiation had an effect on GSTT1 expression changes, whereas no alteration of gene expression was seen after 4 and 12 hours of recovery from long term irradiation between irradiated and matched non-irradiated skin samples. This indicated that changes in gene expression for the GSTT1 gene apparently occur relatively quickly after exposure to UV radiation. Analysis of both UVA only and combined UVA/UVB short term irradiation indicated that an initial decrease in expression, followed by an increase was likely to represent translation into protein and subsequent transcription of mRNA, and in some cases a second decrease indicated further translation. Hence, it appears as though UV radiation does have a significant effect on the expression of at least one GST gene, and that UV radiation in combination with genetic variation of these genes may play a role in the development of NMSC. Finally, association and subsequent expression analysis was also performed on the vitamin D receptor. The hormonal form of vitamin D, 1a25 dihydroxyvitamin D3, has been shown to have numerous cancer-related effects, including antiproliferative, differentiation, proapoptotic and antiangiogenic effects. These effects are mediated through the binding of 1a25 dihydroxyvitamin D3 to the vitamin D receptor and subsequent transcriptional pathways. Polymorphisms within the VDR are known to regulate its transcription and therefore expression, which is linked to the ability of 1a25 dihydroxyvitamin D3 to bind. Association analysis of a 5’ initiation codon variant (Fok I) and two 3’ variants (Apa I and Taq I) was performed in SK affected and control populations. Although the Fok I variant showed no association with SK development, both the Apa I and Taq I variants were found to be associated with SK development (P = 0.043 and P = 0.012, respectively). In particular, the Aa and Tt genotypes were associated with increased risk of SK. These results were however more complicated, as shown by further analysis. This showed that genotypes containing at least one allele that conferred decreased VDR transcription (ie. AA/Aa and Tt/tt) increased risk of SK development by 2-fold in fair skinned individuals (OR: 2.1; CI: 1.2-3.7 and OR: 1.7; CI: 1.1-2.7 for Apa I and Taq I variants, respectively) but also found to decrease the risk of SK development by 2-fold in medium skinned individuals (OR: 0.5; CI: 0.3-1.0 for Apa I variants). Additionally, genotypes containing 2 alleles conferring decreased transcription of the VDR gene were found to further increase the risk for SK development in fair skinned individuals (OR: 2.5; CI: 1.4-4.5 and OR: 2.4; CI: 1.2-5.0 for Apa I and Taq I variants, respectively), indicating a possible additive effect for the alleles. The highly differential association of the VDR gene polymorphisms amongst phenotypes may reflect a combination between the ability of an individual to synthesise 1a25 dihydroxyvitamin D3 with the binding availability of the VDR. To further investigate the role of VDR in NMSC, expression analysis of the VDR gene was undertaken using real time reverse transcription PCR, with SYBR green fluorescence and 18S as a comparative gene, to examine expression pattern changes associated with UV radiation. It was found that short term irradiation, as well as long term irradiation and recovery were associated with gene expression changes. Short term irradiation resulted in patterns indicative of translation and subsequent transcription, whereas long term irradiated samples resulted in reduction of VDR expression that was recovered after an extended period of time. Thus, VDR expression is clearly influenced by UV exposure. It would be very interesting to see more specifically if particular VDR genotypes, which appear to play a role in NMSC risk, also are affected differentially by UV exposure. It is possible that VDR expression is reduced to limit excessive binding of 1a25 dihydroxyvitamin D3, although since both UVA and UVB radiation affect VDR expression, this may not be mediated the effect of 1a25 dihydroxyvitamin D3 but rather a different pathway resulting from a general UV response. In summary, the detection of a number of susceptibility genes involved in SK development and their subsequent expression analysis in response to UV radiation has given further insight into the molecular changes associated with NMSC. In fact, both detoxification genes (GSTM1 and GSTT1) and a transcription related gene (VDR), were found to confer susceptibility to solar keratosis, an early stage skin lesion with tumourigenic potential. This suggests that even the earliest stages of skin cancer are mediated through a wide range of effects. Additionally, expression changes related to these genes indicate that they are associated with the well known environmental carcinogen of UV radiation and that their effects may be mediated through a wide range of pathways. Although implication of the 18q region in SCC progression was not confirmed in this study, it is still likely to play a role in malignant transformation. The implication of this region, as well as the implication of susceptibility genes has vastly increased knowledge into processes associated with NMSC. Although additional analysis can confirm and further implicate these molecular alterations, this study has resulted in a more comprehensive understanding of NMSC that may ultimately be of benefit in terms of prognosis and treatment.
54

A histopathological and immunohistochemical evaluation of scar basal cell carcinomas.

Sydney, Clive. January 2006 (has links)
Infiltrative morphological mimicry at sites of biopsy-proven nodular basal cell carcinoma has been described. The immunoprofile of scar BCCs (scar BCCs,SBCCs) has not been documented. The aim of this study was to assess the histopathological spectrum, stromal (fibronectin, laminin, actin, desmin and vimentin) response and proliferation (bcl-2, MIB1 and p53) status of SBCCs. Twenty nine BCCs occurring in scars, unrelated to previous malignancy (de novo scar BCCS, DN-SBCCs), 27 BCCs that were incompletely excised and regrew at the same site (regrowth scar BCCs, RG-SBCCs) and 25 BCCs that were completely excised with tumour free margins, but recurred at the same site (recurrent scar BCCs, R-SBCCs) were accessed from the files of the Department of Pathology and Plastic and Reconstructive Surgery of the Faculty of Medicine, University of KwaZulu Natal, and formed the basis of this study. The morphological features of DN-SBCCs was pure (3%), predominantly nodular (79%), micronodular (7%) and infiltrative (11 %). RG-SBCCs were predominantly nodular (82%), micronodular (7%) and infiltrative (11%). RSBCCs were predominantly nodular (80%), micronodular (4%) and infiltrative (16%). The majority of DN-SBCCs, RG-SBCCs and R-SBCCs showed intact basement membrane laminin staining, while two (7%) DN-SBCCs showed 1 + and 2+ loss of basement membrane laminin staining. Three (11 %) and two (8%) RG-SBCCs and R-SBCCs,respectively, showed 2+ or 3+ basement membrane laminin discontinuity. The majority of DN-SBCCs (83%), RGSBCCs (75%) and R-SBCCs (88%) were actin negative. No desmin immunopositivity was demonstrated in the epithelial or stromal components of DN-SBCCs, RG-SBCCs and R-SBCCs. All BCC groups showed high 3+ or 4+ vimentin immunopositivity. The majority (>50%) of the SBCCs showed low (2+) bcl-2 immunopositivity. There was no significant difference in p53 immunopositivity in all SBCCs. SBCCs demonstrate phenotypic and immunophenotypic heterogeneity. That DN-SBCCs with the infiltrative and micronodular patterns have not recurred implies that the histomorphology is a pseudo-aggressive pattern. A similar view could pertain to RG-SBCCs, but because the scar did not cicatrise the incompletely excised BCC implies that the histomorphology of RG-BCC may be a potentially more aggressive phenotype. The recurrence of a completely excised basal cell carcinoma may be viewed as a feature of an aggressive tumour, especially when the recurrent BCC contains micronodular and infiltrative components. However, as most R-SBCCs occurred at head and neck sites that are exposed to ultraviolet light, it is also possible that these are simply new BCCs occurring within scars in head and neck sites prone to BCCs. Furthermore, these R-SBCCs were not destructive tumours. CONCLUSION: None of the infiltrative foci of DN-SBCCs demonstrated laminin loss. Three of 5 with intra-epithelial actin immunopositivity also demonstrated low bcl-2 and high p53 staining, immunoprofiling these with an aggressive infiltrative component. Of 11 RG-SBCCs with high p53 staining, 4 had high p53 staining in the infiltrative component, but only one had a low bcl-2 composite score and low bcl-2 score in the infiltrative focus. In addition, these infiltrative foci demonstrated intraepithelial MSA positivity and a "VA" immunophenotype of the stromal cells, indicating one RG-SBCC with an established, aggressive immunophenotype. Those positive with one or more, but not all, aggressive immunostains, are hypothesised to be RG-SBCCs evolving/developing an aggressive immunophenotype. Only one R-SBCC, with a predominantly infiltrative pattern, had a "full-house" of aggressive immunostaining in the infiltrative foci: low bcl-2, high p53, 2+ laminin discontinuity and intra-epithelial and stromal MSA positivity. Of significance is that 7 with a predominant nodular pattern had a high p53 score. Of these, 5 had high bcl-2 scores. Hence, while high p53 may be a feature of aggressive growth, it is important that this staining be complemented with that of bcl-2, laminin and MSA. / Thesis (M.Med.Sc.)-University of KwaZulu-Natal, Durban, 2006.
55

Methylation in head and neck squamous cell carcinoma

Bennett, Kristi Lynn. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Full text release at OhioLINK's ETD Center delayed at author's request
56

Integrating regulatory and methylome data for the discovery of clear cell Renal Cell Carcinoma (ccRCC) variants

Calvert-Joshua, Tracey January 2015 (has links)
>Magister Scientiae - MSc / Kidney cancers, of which clear cell renal cell carcinoma comprises an estimated 70%, have been placed amongst the top ten most common cancers in both males and females. With a mortality rate that exceeds 40%, kidney cancer is considered the most lethal cancer of the genitourinary system. Despite advances in its treatment, the mortality- and incidence rates across all stages of the disease have continued to climb. Since the release of the Human Genome Project in the early 2000’s, most genetics studies have focused on the protein coding region of the human genome, which accounts for a mere 2% of the entire genome. It has been suggested that diverting our focus to the other 98% of the genome, which was previously dismissed as non-functional “junk DNA”, could possibly contribute significantly to our understanding of the underlying mechanisms of complex diseases.In this study a whole genome sequencing somatic mutation data set from the International Cancer Genome Consortium was used. The non-coding somatic mutations within the promoter, intronic, 5-prime untranslated and 3-prime untranslated regions of clear cell renal cell carcinoma-implicated genes were extracted and submitted to RegulomDB for their functional annotation.As expected, most of the variants were located within the intronic regions and only a small subset of identified variants was predicted to be deleterious. Although the variants all belonged to a selected subset of kidney cancer-associated genes, the genes frequently mutated in the non-coding regions were not the same genes that were frequently mutated in the whole exome studies (where the focus is on the coding sequences). This indicates that with whole genome sequencing studies a new set of genes/variants previously unassociated with the clear cell renal cell carcinoma could be identified. In addition, most of the non-coding somatic variants fell within multiple transcriptions factor binding sites. Since many of these variants were also deleterious (as predicted by RegulomDB), this suggests that mutations in the non-coding regions could contribute to disease due to their role in transcription factor binding site disruptions and their subsequent impact on transcriptional regulation. The substantial overlap between the genes with the most aberrantly methylated variants and the genes with the most transcription factor binding site disruptions signifies a potential link between differential methylation and transcription factor binding site affinities. In contrast to the upregulated DNA methylation generally seen in promoter methylation studies, all of the significant hits in this study were hypomethylated, with the subsequent up-regulation of the genes of interest, suggesting that in the clear cell renal cell carcinoma, aberrant methylation may play a role in activating proto-oncogenes, rather than the silencing of genes. When a cross-analysis was carried out between the gene expression patterns and the transcription factor binding site disruptions, the non-coding somatic variants and differential methylation profiles, the genes affected again showed a clear overlap. Interestingly, most of the variants were not present in the 1000genomes data and thus represent novel mutations, which possibly occurred as a result of genomic instability. However, identifying novel variants are always promising, since they epitomise the possibility of developing pioneering ways to target diseases. The numerous detrimental effects a single non-coding mutation can have on other genomic processes have been demonstrated in this study and therefore validate the inclusion of non-coding regions of the genome in genetic studies in order to study complex multifactorial diseases. / National Research Foundation (NRF) and DAAD
57

Identification of Therapeutic Targets for Oral Squamous Cell Carcinoma

Avinash, Pradhan Shalmali January 2013 (has links) (PDF)
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer, with a worldwide incidence of 275,000 new cases annually (Warnakulasuriya, 2009). Globally, the head and neck carcinoma represents a major cause of morbidity and mortality and is the sixth most commonly occurring cancer (Warnakulasuriya, 2009). A majority (>90%) of the head and neck cancers are squamous in origin and thus are linguistically referred to as head and neck squamous cell carcinoma (HNSCC) (Warnakulasuriya, 2009). HNSCC includes cancers of the oral cavity, larynx and pharynx; oral cancer being the most common (Warnakulasuriya, 2009). Although, HNSCC is the sixth most common cancer globally (Warnakulasuriya, 2009), the Indian scenario is graver. According to GLOBOCAN 2008 (http://globocan.iarc.fr), the worldwide age standardized incidence rate (ASR) for HNSCC (and thus OSCC) is 5.3 and 2.5 per 100,000 males and females respectively (Ferlay et al., 2010). In India, the ASR is 9.8 and 5.2 per 100,000 males and females respectively, clearly demonstrating a remarkably high incidence rate of OSCC (Ferlay et al., 2010; http://globocan.iarc.fr). OSCC is a peculiar cancer which is largely preventable and rarely presents as a familial disorder. The most common etiological factors associated with OSCC include tobacco and alcohol consumption (Johnson, 2001). Additionally, high risk human papillomaviruses (HPV strains 16 and 18) as well as genetic predispositions have been implicated. The treatment of OSCC mainly relies on surgical resection of the tumor. The site, size, depth of infiltration and proximity to the bone of the tumor determine whether a combination of surgery with radiation therapy or chemotherapy would be advised (Scully and Bagan, 2009). The concomitant chemo-radiation therapy is the most commonly used strategy in locally advanced cancer. Taxanes (e.g., paclitaxel and docetaxel) and platinum-based induction chemotherapy (e.g., cisplatin) are the options in the treatment of locally advanced cancer. Epidermal growth factor receptor (EGFR) targeted with cetuximab in combination with radiotherapy has been successfully tested in a large randomized trial and thus is currently a new option (Scully and Bagan, 2009). The success of cetuximab has paved the path for the development and implementation of molecules targeting various signaling pathways. Despite extensive research on oral squamous cell carcinoma (OSCC), the five-year survival rate has not changed in several decades with the exception of the targeted treatment strategies involving cetuximab as discussed above. The current chemotherapeutic approaches lack selectivity and are flagitious. Thus, effective treatment of OSCC requires the identification of molecular targets to design appropriate therapeutic strategies. To this end, the present study took three distinct approaches in order to validate the use of existing targets and to reveal novel prognostic biomarkers and therapeutic targets. 1) Targeting the PI3K-AKT-MTOR pathway in OSCC and identification of determinants of its sensitivity. 2) Gene expression analysis of ectopically overexpressed TSC2 to identify new therapeutic targets and prognostic biomarkers as well as to elucidate the genes regulated by it. 3) Expression profiling of CYP1B1 in order to validate the use of CYP1B1 based prodrug therapy in OSCC. Investigations pertaining to the changes in gene and protein expression profiles in malignant as well as pre-malignant lesions have documented the deregulation of the PI3K-AKT-MTOR (phosphoinositide 3-kinase-AKT-mechanistic target of rapamycin) and EGFR (epidermal growth factor receptor) pathways in OSCC which are being widely targeted in many therapeutic strategies (Molinolo et al., 2007; Chakraborty et al., 2008; Matta and Ralhan, 2009; Molinolo et al., 2009; Stransky et al., 2011). The PI3K-AKT-MTOR pathway is a central hub for controlling cellular proliferation and growth in response to various intracellular as well as extracellular stimuli. Crucial signaling cascades including WNT, RAS, HIF-1α and AMPK cross-talk with the PI3K-AKT-MTOR pathway at a variety of molecular junctions. Thus, making this pathway sensitive to perceiving various growth modulatory conditions, ranging from the presence of growth factors to hypoxia and nutrient deprivation (Sengupta et al., 2010; Yang and Guan, 2007). The aberrant expression of the PI3K-AKT-MTOR pathway in OSCC advocated the targeting of this coveted pathway (Chakraborty et al., 2008). In various cancers, the monotherapeutic treatments with inhibitors like LY294002 (PI3K inhibitor) and rapamycin (MTOR inhibitor) demonstrated reduced efficacies. Such reduced efficacies were attributed to the drug toxicity and non-specific action of LY294002 (Davies et al., 2000; Sun et al., 2005; Ikezoe et al., 2007; Wang et al., 2008; Liu et al., 2009), or the ablation of a feedback inhibition loop leading to the reactivation of the PI3K-AKT-MTOR pathway by rapamycin (O'Reilly et al., 2006; Carracedo et al., 2008). Thus, rapamycin or its analogues demonstrated mediocre efficacy due to cytostatic effects in clinical trials, primarily due to the paradoxical activation of major survival kinases namely MAPK and AKT (O'Reilly et al., 2006; Carracedo et al., 2008). The present study aimed at increasing the efficacy of these drugs by incorporating a combinatorial approach. The MTT assay demonstrated that prolonged monotherapeutic treatments with rapamycin led to a modest growth inhibition in three OSCC (KB, SCC131 and SCC084) and HeLa cell lines. Western blot analysis of the phosphorylation status of AKT and RPS6KB1 revealed that monotherapeutic treatments with rapamycin for 96 hr led to the reactivation of the PI3K-AKT-MTOR pathway. Thus, the modest growth inhibitory effect of rapamycin was attributed to the reactivation of the PI3K-AKT-MTOR pathway. A combinatorial treatment approach was hence believed to circumvent this problem in order to increase the efficacy of targeting the PI3K-AKT-MTOR pathway. The PI3K inhibitor LY294002 was used combinatorially with rapamycin. This prolonged dual combinatorial treatment regime was distinctly more efficacious than either of the drugs alone and led to a reduction in cellular viability accompanied by increased sub-G1 population, indicating marked cell death that was characterized as caspase-3 dependent apoptosis. The differential sensitivity of the cell lines towards this combinatorial treatment revealed a novel determinant of the sensitivity, the transactivation of EGFR. The cell lines (SCC131 and SCC084) that were capable of transactivating EGFR were relatively resistant to the dual targeting of PI3K and MTOR in comparison to cell lines that did not transactivate EGFR (HeLa and KB). Further, targeting PI3K, MTOR and EGFR simultaneously was more efficacious in the presence of EGFR transactivation than dually targeting PI3K and MTOR. The results conclusively proved that the combinatorial therapeutic approach dually targeting PI3K and MTOR is a promising treatment strategy as compared to a monotherapeutic treatment and a major factor determining the sensitivity towards this treatment is the status of autophosphorylation of EGFR (Tyr1173) which governs the potential for EGFR transactivation by the combinatorial treatment. Thus, this study demonstrated that the status of EGFR autophosphorylation (Tyr1173) can be used as a biomarker to predict the sensitivity towards the combinatorial targeting of PI3K and MTOR in OSCC. The PI3K-AKT-MTOR pathway is negatively regulated by TSC2 (tuberous sclerosis complex 2; tuberin) (Tee et al., 2002). The importance of the TSC2 gene in the regulation of cell growth and proliferation is irrefutable. TSC2 facilitates the crosstalk between a variety of cellular signals, making it a crucial hub where many cellular networks integrate like AKT, MAPK and AMPK (Clements et al., 2007; Rosner et al., 2007; Rosner et al., 2008). It is a tumor suppressor gene and is downregulated in many cancers including OSCC (Chakraborty et al., 2008). In order to identify the genes regulated by TSC2 in OSCC, we stably overexpressed TSC2 in KB cells and the changes in the gene expression profiles caused by this ectopic overexpression were observed using a whole genome expression microarray. The results showed differential regulation of 268 genes (107 genes were upregulated and 161 genes were downregulated, p<0.05, fold change ≥ 1.5). A majority of these genes were functionally associated with transcription, cell growth and proliferation, apoptosis, cell cycle and neurogenesis. Functional annotation and network analysis was performed by using the DAVID v6.7 and IPA version 8.7 softwares. The microarray data revealed a novel aspect in the crosstalk between WNT signaling and TSC2, namely the transcriptional regulation of WNT signaling by TSC2. Further, in the context of therapeutic applications, the microarray analysis revealed multiple genes that were functionally categorized to be involved in response to radiation, UV and drugs (e.g., SERPINB13 and IL1B). Future studies on the regulation of such genes that are involved in responses to drugs and radiation may give insights into the role of TSC2 in resistance or sensitivity towards chemotherapy and radiation therapy. Moreover, EREG, a member of the epidermal growth factor family, was found to be the most downregulated gene in the microarray analysis. Previous reports have documented elevated levels of EREG in tuberous sclerosis lesions and its association with poor clinical prognosis in OSCC patients (Li et al., 2008; Shigeishi et al., 2008), making its regulatory aspects intriguing. Additionally, published data on the transcriptional functions of TSC2 instigated us to analyze the role of TSC2 in the regulation of EREG. TSC2 has been shown to modulate the transcription mediated by members of the steroid receptor superfamily of genes (Henry et al., 1998) and was shown to bind specifically to ERα and inhibit estrogen induced proliferation (Finlay et al., 2004). Also, TSC2 has been shown to possess C-terminal transcriptional activation domains (Tsuchiya et al., 1996). We have therefore attempted to investigate the transcription related functional aspects of TSC2 by exploiting the observed transcriptional repression of EREG. The physiological roles of TSC1 and TSC2 that are independent of the PI3K-AKT-MTOR pathway have been termed as ‘non-canonical’ (Neuman and Henske, 2011). The repression of EREG by TSC2 was observed to be insensitive to rapamycin, suggesting that it was independent of MTORC1 and thus a non-canonical function of TSC2. To determine whether the repression in EREG was at the level of the promoter, we performed a dual luciferase reporter assay. The results showed that the EREG promoter was repressed by stable as well as transient overexpression of TSC2. In order to elucidate the mechanism of transcriptional regulation by TSC2, we performed the ChIP analysis to observe the in vivo binding of TSC2 to the EREG promoter. In the ChIP analysis with the anti-TSC2 antibody, we observed that TSC2 did not bind to the EREG promoter between the regions -857 bp to -302 bp or -325 bp to +165 bp. Further, in silico analysis revealed an interesting trend among the transcription factors that were differentially regulated by TSC2 and had putative binding sites on the EREG promoter. A majority of these transcription factors (17/21) were downregulated by the overexpression of TSC2. This observation suggested that the repression of EREG could be an indirect effect due to repression of transcription factors caused by overexpression of TSC2. On the whole, this study revealed novel functions of TSC2 in OSCC with implications in determining novel biomarkers and therapeutic targets. As discussed previously, OSCC has a very flagitious treatment regime. A prodrug approach is thought to aid in targeting chemotherapy (Rooseboom et al., 2004). CYP1B1, a member of the cytochrome P450 family, has been implicated in chemical carcinogenesis (Bandiera et al., 2005; Sliwinski et al., 2010). There exists a general accordance that this protein is overexpressed in a variety of cancers (e.g., colon, lung, renal, bladder, prostate, breast, endometrial and esophageal cancers), making it an ideal candidate for a prodrug therapy (McFadyen et al., 1999; Murray et al., 2001; McFadyen et al., 2004; Sissung et al., 2006; Wen and Walle, 2007; Sliwinski et al., 2010). The activation of the prodrug facilitated by CYP1B1 would enable the targeting of chemotherapy to tumor tissues in which CYP1B1 is specifically overexpressed as a result reducing the non-specific side effects that the current chemotherapy elicits (Rooseboom et al., 2004). This study was aimed at validating the use of CYP1B1 as a target for the prodrug therapy in OSCC. The expression profile of CYP1B1 was analysed in a panel of 51 OSCC tumors, their corresponding normal tissues, an epithelial dysplasia lesion and its matched normal tissue by qRT-PCR, Western blotting and Immunohistochemistry. Counterintuitively, CYP1B1 was found to be downregulated in 77.78% (28/36) tumor tissues in comparison to their corresponding normal tissues as well as in the epithelial dysplasia lesion compared to its matched normal tissue at the transcriptional level, and in 92.86% (26/28) of tumor tissues at the protein level. This clearly demonstrated the downregulation of CYP1B1 at the transcriptional and translational levels in tumor tissues in comparison to their corresponding normal tissues. These observations indicate that caution should be observed as this therapy may not be applicable universally to all cancers. Since CYP1B1 has been shown to be involved in the activation of pro-carcinogens (Murray et al., 2001; Bandiera et al., 2005; Sissung et al., 2006), its inhibition could facilitate the development of a prophylactic therapy for oral cancer. Overall, this study has identified the transactivation of EGFR as a determinant of sensitivity towards combinatorial targeting of PI3K and MTOR in OSCC and has demonstrated that the autophosphorylation of EGFR (Tyr1173) can be used as a marker to judge the sensitivity towards this treatment. In the clinical perspective, the identification of such markers would aid in predicting the efficacy of targeted therapies. Such investigations would enable the strategic treatment of OSCC patients, thus decreasing the time lost in trial and errors for determining the appropriate treatment. Additionally, this study elucidated a novel role of TSC2 in the transcriptional repression of EREG, a prognostic biomarker for OSCC. Further, the study revealed potential prognostic biomarkers as well as therapeutic targets that are regulated by TSC2 by using a whole genome expression microarray. Moreover, the counterintuitive downregulation of CYP1B1 in OSCC tumors suggested the possibility of a prophylactic therapy for oral cancer but also advised a precautionary note for the application of prodrug treatments based on CYP1B1 overexpression in OSCC.
58

Development of novel in vitro and in vivo models for determining primary events in HLRCC tumourigenesis

O'Flaherty, Linda H. January 2012 (has links)
Development of novel ill vitro and ill vivo models for determining primary events in HLRCC tumourigenesis Linda O'Flaherty, Mansfield College Thesis submitted for degree of Doctor of Philosophy Nuffield Department of Clinical Medicine, University of Oxford Hilary Term 2012 Germline mutations of fumarate hydratase (FR), encoding an enzyme of the tricarboxylic acid (TCA) cycle, predispose affected individuals to hereditary leiomyomatosis and renal cell cancer (HLRCC). FH-deficient cells and tissues have been shown to accumulate fumarate, exhibit S-(2-succinyl) cysteine (2SC) protein modifications and to constitutively express hypoxia-inducible factor alpha (HIF -1 a and -20.), under nonnoxic conditions. This thesis presents a phenotypic characterisation of FhI-I- mouse embryonic fibroblasts (MEFs), generated from previously reported conditional Fhl knockout mice, as a new in vitro system for investigating and identifying biochemical and metabolic pathways that are dysregulated as a result of FhI inactivation. These cell lines reproduced the aforementioned phenotypes, in addition to an observed shift from oxidative phosphorylation (OXPHOS) to glycolytic metabolism. Re-expression of either full length, mitochondrial-targeted FH (FhI-I- +FH) or cytoplasmic FH (Fhrl- +FHl'1MTS) in FhI-deficient MEFs was sufficient to reduce intracellular fumarate and to correct for the dysregulation of the Hif pathway. These results were of particular interest as they demonstrated that nonnoxic stabilisation of Hif-Ia occurs independently of the persistent mitochondrial defect observed in Fhrl- +FHl'1MTS MEFs. These findings were corroborated in vivo following the development of transgenic mouse models, ubiquitously expressing either FH or FHl'1MTS in mice with targeted inactivation of FhI in renal tubular cells. Surprisingly, the cytoplasmic-restricted FH (FHl'1MTS) transgene was just as efficient as the transgenic mice expressing mitochondrial- targeted FH at rescuing the cystic phenotype associated with Fh I-deficiency in the kidneys. As the function of cytoplasmic FH has remained poorly understood, these results go some way to extricating a role for this isofonn of FH. The results of this thesis demonstrate that these novel in vitro and in vivo models, used either alone or in combination, are a versatile and robust paradigm for studying altered cell metabolism in not only HLRCC but other diseases associated with metabolic dysregulation.
59

The influence of p90RSK on FAK-dependent signalling in human oesophageal squamous carcinoma cells

Lachenicht, Candice January 2017 (has links)
Research dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science. 28th May 2017. / The focal adhesion kinase or FAK plays an important role in detecting and transducing signals that are generated by cell-substrate attachment (Focal adhesions). When these pathways are activated under atypical conditions they may promote metastasis, uncontrolled proliferation and a chemo-resistant phenotype. However the mechanisms by which this protein is activated ectopically in human oesophageal squamous cell carcinomas cell lines (HOSCC) is unknown. In the current study it was hypothesised that the p90 ribosomal S6 kinase, a key member of multiple pro-survival pathways (activator of the Y-box binding protein-1), activates FAK. RSK may promote FAK activation directly, from its location at the plasma membrane, or it may modulate FAK activation indirectly via the regulation of one of its substrates. RSK inhibits the activation of the glycogen synthase kinase 3β (GSK3β) by phosphorylation at Ser9. GSK3β also localises at focal adhesions and may therefore play a role in mediating FAK activity. To ascertain the role RSK plays in FAK activation, 3 inhibition studies were performed. In the first assay, RSK was specifically inhibited within HOSCC and the levels of active FAK monitored (two different environmental conditions). FAK activation was monitored by detecting the auto-phosphorylation of FAK at Tyr397. A GSK3β inhibition assay was then performed in which GSK3β was specifically inhibited and the levels of active FAK monitored. Lastly, a dual inhibition assay was performed where both RSK and GSK3β were inhibited simultaneously and the levels of active FAK monitored. The overall net changes in the phospho-protein profile indicated that all of the HOSCC cells had distinct cellular responses to the three inhibitor combinations. However RSK did not appear to activate/inhibit FAK activity directly, in most of the HOSCC cells, but rather modulated FAK activation through the inhibition of GSK3β. The effects the RSK/GSK3β pathway had on FAK activation was partially dependent on the HOSCC cells containing active levels of PTEN. Interestingly, the inhibition of both GSK3β and RSK reduced the levels of active FAK in 3 of the 5 HOSCC cell lines, indicating that this might be a good anti-cancer therapeutic. RSK appeared to play a more context specific role in FAK activation within the HOSCC cells suggesting that the grading system for moderately differentiated carcinomas needs to be improved. This paper also highlights the importance of studying the effects the microenvironment has on neoplasmic transformation as varied environmental conditions, during the RSK inhibition studies, drastically impacted the effects the RSK inhibitor had on FAK activation. / MT 2017
60

Characterising the anti-proliferative effects of metformin and assessing its efficacy in combination chemotherapy strategies in-vitro for the treatment of oesophageal squamous cell carcinoma

Jivan, Rupal January 2015 (has links)
Oesophageal Squamous cell Carcinoma (OSCC) has a poor survival rate and is highly prevalent in southern Africa. Cisplatin is the standard therapeutic drug for OSCC, but has poor efficacy due to drug resistance and toxicity. Development of therapies that can be used to reduce the dose of cisplatin or offer a more effective tumour response is of great importance. Metformin is an anti-diabetic drug that has demonstrated anti-proliferative effects in various cancer types. Metformin’s potential as a chemotherapeutic drug is highlighted by its low toxicity profile, ability to reduce growth factor signalling, and toxic effects against cancer stem cells. In this study we combined metformin and cisplatin to find that whilst metformin reduced the proliferation of OSCC cell lines, it antagonised the effects of cisplatin. This was attributed to increased levels of reduced thiols as a consequence of enhanced glycolysis, which leads to the formation of reducing equivalents such as NADPH. Since metformin enhances the intracellular reducing potential, we combined metformin with drugs that are activated in reducing environments. Two copper bis(thiosemicarbazones), Cu-ATSM and Cu-GTSM, both retained their toxicity in the presence of metformin. Disulfiram (DSF), an established anti-alcoholism drug, has previously demonstrated chemotherapeutic potential when conjugated to copper (Cu-DSF). DSF and Cu-DSF both exerted potent cytotoxic effects against OSCC cell lines which were enhanced by metformin. Metformin increased intracellular copper accumulation when combined with DSF and we found that DSF perturbed proteasome function, as observed in other studies. Furthermore, we identified a novel target of DSF, the lysosome, and found that DSF reduces lysosomal pH, which led to increased accumulation of lysosomal protein aggregates, thereby inhibiting autophagy in OSCC cell lines. Therefore, the co-prescription of metformin and cisplatin is not advised for OSCC treatment. However metformin can be effectively combined with DSF, which inhibits multiple protein degradation pathways, to offer a novel treatment option for OSCC.

Page generated in 0.0773 seconds