• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 44
  • 34
  • 24
  • 12
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 437
  • 437
  • 78
  • 75
  • 65
  • 55
  • 46
  • 36
  • 33
  • 33
  • 32
  • 31
  • 29
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Compartmentalized phosphodiesterase 4D isoforms expression, targeting and localization in vascular myocytes

Truong, Tammy 14 March 2014 (has links)
During the development of atherosclerosis, contractile vascular smooth muscle cells (VSMCs) change to cells capable of migrating and proliferating to mediate repair, where the responses may be adaptive or mal-adaptive in effect. Cyclic adenosine monophosphate (cAMP)-elevating agents have been shown to inhibit migration of VSMC. cAMP activity within the cell is known to be ubiquitous and dynamic, requiring control through signal termination mechanisms for cellular homeostasis. Phosphodiesterase (PDE) enzymes are central to this critical regulatory process catalyzing the hydrolysis of cAMP. A great deal of insight into the role of PDEs in defining compartmentalization of cAMP signaling has arisen predominately from recent studies on the cAMP-specific PDE4 family. Compartmentalization of PDE4 is mediated by their unique N-terminal domains, which have been proposed to provide the “postcodes/zipcodes” for cellular localization. PDE4D isoforms vary widely, yet their conservation over evolutionary time suggests important non-redundant roles in distinct cellular processes. To study the potential role of individual PDE4D isoforms we seek to utilize the unique N-terminal targeting domains that are proposed to be responsible for their protein-protein interactions and site-directed localization. Herein, we report on the expression, targeting and localization of five “long” PDE4D isoforms and the impact on cell morphology of certain amino-terminal domains of individual PDE4D constructs expressing green fluorescent protein (NT-PDE4D/GFP) in human aortic smooth muscle cells (HASMCs). Through the development of engineered NT-PDE4D/GFP expression plasmids, we were able to study the cell biological impacts associated with the overexpression of individual PDE4D amino-terminal variants in HASMCs. We show that NT-PDE4D5/GFP and NT-PDE4D7/GFP expressing cells exhibited an elongated cell morphology, where this effect was much more marked in NT-PDE4D7/GFP expressing cells, exhibiting multiple leading edge structures and highly elongated “tails”. We identify a potential role for PDE4D7 targeting in the regulation of cell polarity and migration. Our results suggest the novel idea that PDE4D7, rather than the four other long PDE4D isoforms (PDE4D3, PDE4D5, PDE4D8, or PDE4D9), represents the dominant PDE4D variant involved in controlling cAMP-mediated effects on cell tail retraction dynamics. / Thesis (Master, Pathology & Molecular Medicine) -- Queen's University, 2014-03-13 13:00:31.684 / Video I: Time-lapse video of GFP-expressing cell migration in HASMC. GFP expressing cells did not differ in cell migration or morphology compared to non-injected control cells. HASMCs were microinjected with GFP construct. Representative images of micoinjected GFP cells were taken 24 h post-injection overnight at 30min intervals using a Zeiss Axiovert S100 microscope and processed as described in Materials & Methods. (10X) / Video II: Time-lapse video of NT-PDE4D7/GFP-expressing cell migration in HASMC. NT-PDE4D7/GFP expressing cells exhibit elongated tail and decrease in cell migration compared to non-injected control cells. HASMCs were microinjected with NT-PDE4D7/GFP construct. Particle tracking of NT-PDE4D7 cells showed cleaving and full detachment of elongated tail. Representative images of micoinjected NT-PDE4D7 cells were taken 24 h post-injection overnight at 30min intervals using a Zeiss Axiovert S100 microscope and processed as described in Materials & Methods. (10X)
92

A balancing act between the 'Src-Stat3' and 'p53-caldesmon' pathways dictates the outcome of Src-induced invasive phenotypes

Mooney, Patrick 11 January 2010 (has links)
Cell migration and invasion are essential physiological processes required for the growth and development of all multicellular organisms. However, they have also been implicated in the pathogenesis of certain vascular system diseases and invasive cancers. In this study, we investigate two proteins involved in cell proliferation and survival signaling, p53 and Stat3, which have been found misregulated in atherosclerosis and cancer, to establish what effect they have on the development of Src-induced invasive phenotypes in aortic vascular smooth muscle cells (VSMC) and NIH 3T3 fibroblasts. In the first stage of this experiment, we investigated the tumor suppressor p53. Once believed to act primarily as a regulator of the cell cycle, DNA repair, senescence and apoptosis, current evidence suggests that p53 can also regulate cell migration and invasion. For our study, we stably transduced VSMC and NIH 3T3 fibroblasts with constitutively active Src (SrcY527F) to generate invasive cell lines with pronounced podosome and rosette formation. We established for the first time that p53 suppresses Src-induced podosome and rosette formation, extracellular matrix degradation, cell migration and invasion in these cells. We also present novel data showing that p53 suppresses these invasive phenotypes, at least in part, by up-regulating the expression of caldesmon, an actin binding protein which stabilizes stress fibers and inhibits podosome and rosette formation. In the second part of this study, we show that Stat3, a pro-survival and pro-metastatic transcription factor, is required downstream of Src for the promotion of invasive phenotypes in VSMC and NIH 3T3 fibroblasts. Interestingly we have also shown for the first time that Stat3 can localize to podosomes and rosettes in these cells. The exact physiological reasoning for this localization, however, remains to be determined. This study provides strong evidence suggesting that mutual antagonism between the anti-invasive ‘p53-caldesmon’ and pro-invasive ‘Src-Stat3’ pathways dictates the outcome of Src-induced invasive phenotypes in VSMC and NIH 3T3 fibroblasts. / Thesis (Master, Biochemistry) -- Queen's University, 2010-01-09 21:57:30.056
93

Understanding the Hippo-LATS pathway in tumorigenesis

GRIEVE, STACY LEANNE 26 September 2011 (has links)
The Hippo-LATS signaling pathway originally identified in Drosophila is conserved in mammalian systems and serves essential roles in mediating size control as well as tumorigenesis. In humans, the core kinase cassette consisting of adaptor proteins WW45 and MOB1, and Ser/Thr kinases MST1/2 and LATS1/2 signal by phosphorylating and inactivating transcriptional co-activators YAP and TAZ, causing cell growth arrest. As the central kinases within the Hippo-LATS pathway, examining the cellular and molecular phenotypes of LATS1 and LATS2 (LATS) will provide insight into the role of this pathway in tumorigenesis. By simultaneously knocking down both LATS1 and LATS2, genes that were differentially expressed were identified through a whole human genome microarray screen. The multitude of genes identified including CYR61, MYLK, CDKN1A, SLIT2, and TP53INP1 not only provide further evidence for the role of LATS in cell proliferation and apoptosis, but also implicate LATS in novel functions such as cell motility. Loss of LATS1 and/or LATS2 enhances cell migration whereas overexpression of LATS1 dramatically inhibits cell migration in multiple cell lines. The ability of LATS to regulate cell migration occurs through two potential mechanisms. Firstly, LATS functions through its kinase substrates YAP and/or TAZ, or alternatively, LATS1 directly binds actin and inhibits actin polyermization. Thus, through loss of functions studies, we identified a novel role for LATS in regulating cell migration as well as novel mechanisms of LATS function. As an important signaling molecule within the cell, LATS and the Hippo-LATS pathway are tightly regulated. Using clues from the Drosophila pathway, we examined how the previously uncharacterized gene, hEx, functions within this pathway. Importantly, this thesis characterizes hEx as a putative tumor suppressor showing that it can inhibit cell proliferation, sensitize cancer cells to Taxol treatment as well as inhibit tumor growth in nude mice. However, unlike Drosophila expanded, hEx functions independently of the Hippo-LATS pathway, suggesting that the mammalian signaling pathway is more complicated. The research findings from this thesis enhance our knowledge of the Hippo-LATS pathway in tumorigenesis by elucidating new functions and mechanisms of LATS functions as well as by exploring how upstream components function in relation to this pathway. / Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2011-09-23 10:06:54.687
94

Identification and Characterization of Proteins and MicroRNAs that Modulate Receptor Signaling, Vesicular Trafficking and Cell Migration in Vascular Cells

Heldin, Johan January 2014 (has links)
Blood vessels deliver nutrients and oxygen to tissues. Importantly, the functions and growth of blood vessels are commonly altered in disease. The inside of all blood vessels are lined with endothelium, a thin specialized layer of endothelial cells that separate the blood from other tissues. This thesis deals with the identification and functional characterization of proteins and microRNAs that have key roles as modulators of growth factor signaling and directed cell migration of endothelial cells and other vascular cells. A previously uncharacterized protein of the exocyst complex, Exocyst complex component 3-like 2 (ExoC3L2) was identified and shown to be highly expressed in endothelial cells of sprouting vessels. Suppression of ExoC3L2 resulted in reduced VEGF-A signaling together with reduced chemotaxis in response to VEGF-A gradients. VEGF-A-signaling via its receptor VEGFR-2 is thus modulated by the exocyst complex and ExoC3L2. Expression profiling of highly vascularized tissues were used to identify several microRNAs selectively expressed in blood vessels. miR-145, targeting the transcription factor Fli1, was shown to be expressed in pericytes and mural cells. Elevated levels of miR-145 reduced chemotaxis of both endothelial cells and fibroblasts in response to growth factor gradients. miR-145 depletion in fibroblasts was shown to inhibit chemotaxis in response to PDGF-BB. The guanine nucleotide exchange factor FGD5 was shown to be selectively expressed in endothelial cells and to regulate Cdc42 activity. FGD5 was shown to regulate the turnover of activated VEGF-receptors. Suppression of FGD5 impaired endothelial cell chemotaxis, suggesting that FGD5 is required for efficient and sustained VEGF-A signaling. Inactivation of RhoD, a regulator of endosomal trafficking, resulted in an increased pool of acetylated and stable microtubules. Knockdown of RhoD in human fibroblasts resulted in a loss of cell polarity. A link between PDGFR-β and RhoD was implicated by the finding that PDGF-BB was shown to trigger formation of GTP-bound RhoD. Chemotaxis towards PDGF-BB was severely inhibited in cells with reduced RhoD expression, suggesting a role for RhoD in chemotaxis via its regulation of microtubule dynamics.
95

Quantitative cell migration analysis of CCR7-mediated lymphocytes migration using a microfluidic device

Wu, Xun January 2013 (has links)
Lymphocyte migration is crucial for adaptive immunity. CCR7 and its ligands mediate the migration and positioning of T cells in lymph nodes but the underlying mechanism is complex. The research in this thesis investigated CCR7-mediated T cell migration using a microfluidics-based approach. A microfluidic method suitable for quantitative migration analysis of genetically modified lymphocyte transfectants was developed. Using this method, I demonstrated chemotaxis of Jurkat transfectants expressing wild-type or C-terminal mutated CCR7 to a CCL19 gradient, and characterized the difference in transfectant migration mediated by wild-type and mutant CCR7. The fluorescent tag allows identification of CCR7-expressing transfectants in cell migration analysis, and microscopy assessment of CCR7 dynamics in migrating cells. Furthermore, my results also showed interesting migratory behaviours of CCR7 Jurkat transfectants in a specific co-existing CCL19 and CCL21 fields. This developed method will be broadly useful for studying cell migration signalling.
96

Role of Flightless I in Cell Migration

Mohammad, Ibrahim 12 January 2011 (has links)
A central process in connective tissue homeostasis is cell migration, which involves dynamic interactions between focal adhesions, the actin cytoskeleton and mitochondria, but the role of focal adhesion proteins in cell migration is not wholly defined. We examined focal adhesion-associated proteins from mouse fibroblasts and identified Flightless I (FliI) as a potential focal adhesion protein. We determined that FliI is distributed in the cytosol and co-localizes with actin monomers and mitochondria, but partially with paxillin. Biochemical assays showed that FliI associates with both actin monomers and short oligomers/filaments. Migration assay determined that cells with reduced FliI expression migrated more quickly and that FliI knockdown inhibited activation of β1 integrins. Consistent with these data, cell adhesion assay demonstrated that FliI knockdown cells were less adherent than wildtype cells. Our findings indicate that FliI may regulate cell migration by interacting with the actin monomers and the mitochondria to affect cell adhesion.
97

Role of Flightless I in Cell Migration

Mohammad, Ibrahim 12 January 2011 (has links)
A central process in connective tissue homeostasis is cell migration, which involves dynamic interactions between focal adhesions, the actin cytoskeleton and mitochondria, but the role of focal adhesion proteins in cell migration is not wholly defined. We examined focal adhesion-associated proteins from mouse fibroblasts and identified Flightless I (FliI) as a potential focal adhesion protein. We determined that FliI is distributed in the cytosol and co-localizes with actin monomers and mitochondria, but partially with paxillin. Biochemical assays showed that FliI associates with both actin monomers and short oligomers/filaments. Migration assay determined that cells with reduced FliI expression migrated more quickly and that FliI knockdown inhibited activation of β1 integrins. Consistent with these data, cell adhesion assay demonstrated that FliI knockdown cells were less adherent than wildtype cells. Our findings indicate that FliI may regulate cell migration by interacting with the actin monomers and the mitochondria to affect cell adhesion.
98

SLK-mediated Phosphorylation of Paxillin Is Required for Focal Adhesion Turnover and Cell Migration

Jennifer Leigh, Quizi 13 December 2011 (has links)
The precise mechanism regulating focal adhesion disassembly has yet to be elucidated. Recently, we have implicated the Ste20-like kinase SLK in mediating efficient focal adhesion turnover and cell migration in a Rac-1 and FAK-dependent manner. Although an indirect association of this kinase with the microtubule network has been determined, the exact involvement of SLK in the disassembly of the adhesion complex remains unclear. With the identification of the focal adhesion protein paxillin as a substrate of SLK, we show that SLK regulates adhesion turnover through its phosphorylation at S250. Mutation of S250 to a threonine residue ablates SLK phosphorylation of paxillin in vitro and results in reduced adhesion turnover and migration in vivo. Additionally, our studies demonstrate that overexpression of the paxillin S250T mutation prevents the redistribution of paxillin to the membrane ruffle in migrating cells. The complete loss of polyubiquitylation in the S250T mutant, combined with no observed reduction in S250T protein expression, suggests that S250 phosphorylation is required for a ubiquitin-mediated modification that regulates paxillin redistribution within the cell. Moreover, we show that phosphorylation of S250 is required for paxillin to interact with FAK. An observed accumulation of phospho-FAKY397 in cells overexpressing the paxillin S250T mutant suggests that phosphorylation of S250 is involved in regulating FAK-dependent focal adhesion dynamics. Consequently, our data suggests that SLK regulates adhesion turnover through the phosphorylation of paxillin at S250.
99

Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex

SUN, Xue-Zhi, TAKAHASHI, Sentaro, GUI, Chun, ZHANG, Rui, KOGA, Kazuo, NOUYE, Minoru, MURATA, Yoshiharu 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
100

Novel roles of the proteins Oskar and Bluestreak in germ cell formation and migration

Jones, Jennifer Rebecca, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.

Page generated in 0.0802 seconds