• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The function and regulation of vinculin in cell-cell adhesions

Peng, Xiao 01 May 2011 (has links)
Adherens junctions are essential for embryogenesis and tissue homeostasis. The major transmembrane adhesion receptors in adherens junctions are the cadherins, which mediate cell-cell adhesion by binding to cadherins on adjacent cells. Cadherin function is regulated by the protein complexes that assemble at its cytoplasmic tail. Vinculin is one cytoplasmic component of the cadherin adhesion complex, but unlike other junction components, it also is enriched in cell-matrix adhesions. The presence of vinculin in cellmatrix adhesions has commanded the most attention, while little is known about its role in cell-cell adhesions. To define the role of vinculin in adherens junctions, I established a short hairpin RNA-based knockdown/substitution system that perturbs vinculin preferentially at sites of cell-cell adhesion. When this system was applied to epithelial cells, cell morphology was altered, and cell-cell adhesion was reduced owing to a lack of cadherin on the cell surface. I investigated the mechanism for this effect and found that vinculin must bind to beta-catenin to regulate E-cadherin surface expression. Having established a role for vinculin in cell-cell adhesions, the critical question became how vinculin recruitment to and activation at cell-cell junctions are regulated. I found that á-catenin triggers activating vinculin conformational changes. Unlike all of the known vinculin activators in cell-matrix adhesions, alpha-catenin binds and activates vinculin independently of an A50I substitution. Thus, adherens junction activators and cell-matrix activators bind to distinct regions of vinculin to activate this molecule. Using mutant vinculins that cannot be tyrosine phosphorylated, I found that vinculin recruitment to cell-cell adhesions, but not cell-matrix adhesions, requires phosphorylation at Y822. Furthermore, this residue is phosphorylated by Abl tyrosine kinases during the assembly of cell-cell adhesions. Taken together, these studies explain how vinculin is differentially recruited to adherens junctions and cell-matrix adhesions and describes the first known role for vinculin at cell-cell adhesions.
2

Role of Flightless I in Cell Migration

Mohammad, Ibrahim 12 January 2011 (has links)
A central process in connective tissue homeostasis is cell migration, which involves dynamic interactions between focal adhesions, the actin cytoskeleton and mitochondria, but the role of focal adhesion proteins in cell migration is not wholly defined. We examined focal adhesion-associated proteins from mouse fibroblasts and identified Flightless I (FliI) as a potential focal adhesion protein. We determined that FliI is distributed in the cytosol and co-localizes with actin monomers and mitochondria, but partially with paxillin. Biochemical assays showed that FliI associates with both actin monomers and short oligomers/filaments. Migration assay determined that cells with reduced FliI expression migrated more quickly and that FliI knockdown inhibited activation of β1 integrins. Consistent with these data, cell adhesion assay demonstrated that FliI knockdown cells were less adherent than wildtype cells. Our findings indicate that FliI may regulate cell migration by interacting with the actin monomers and the mitochondria to affect cell adhesion.
3

Role of Flightless I in Cell Migration

Mohammad, Ibrahim 12 January 2011 (has links)
A central process in connective tissue homeostasis is cell migration, which involves dynamic interactions between focal adhesions, the actin cytoskeleton and mitochondria, but the role of focal adhesion proteins in cell migration is not wholly defined. We examined focal adhesion-associated proteins from mouse fibroblasts and identified Flightless I (FliI) as a potential focal adhesion protein. We determined that FliI is distributed in the cytosol and co-localizes with actin monomers and mitochondria, but partially with paxillin. Biochemical assays showed that FliI associates with both actin monomers and short oligomers/filaments. Migration assay determined that cells with reduced FliI expression migrated more quickly and that FliI knockdown inhibited activation of β1 integrins. Consistent with these data, cell adhesion assay demonstrated that FliI knockdown cells were less adherent than wildtype cells. Our findings indicate that FliI may regulate cell migration by interacting with the actin monomers and the mitochondria to affect cell adhesion.

Page generated in 0.0851 seconds