• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The tumor suppressing roles of tissue structure in cervical cancer development

Nguyen, Hoa Bich 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cervical cancer is caused by the persistent infection of human papilloma virus (HPV) in the cervix epithelium. Although effective preventative care is available, the widespread nature of infection and the variety of HPV strains unprotected by HPV vaccines necessitate a better understanding of the disease for development of new therapies. A major tumor suppressing mechanism is the inhibition of cell division by tissue structure; however, the underlining molecular circuitry for this regulation remains unclear. Recently, the Yap transcriptional co-activator has emerged as a key growth promoter that mediates contact growth arrest and limits organ size. Thus, we aimed to uncover upstream signals that connect tissue organization to Yap regulation in the inhibition of cervical cancer. Two events that disrupt tissue structure were examined including the loss of the tumor suppressor LKB1 and the expression of the viral oncogene HPV16-E6. We identified that Yap mediates cell growth regulation downstream of both LKB1 and E6. Restoration of LKB1 expression in HeLa cervical cancer cells, which lack this tumor suppressor, or shRNA knockdown of LKB1 in NTERT immortalized normal human dermal keratinocytes, demonstrated that LKB1 promotes Yap phosphorylation, nuclear exclusion, and proteasomal degradation. The ability of phosphorylation-defective Yap mutants to rescue LKB1 phenotypes, such as reduced cell proliferation and cell size, suggest that Yap inhibition contributes to LKB1 tumor suppressor function(s). Interestingly, LKB1’s suppression of Yap activity required neither the canonical Yap kinases, Lats1/2, nor metabolic downstream targets of LKB1, AMPK and mTORC1. Instead, the scaffolding protein NF2 was required for LKB1 to induce a specific actin cytoskeleton structure that associates with Yap suppression. Meanwhile, HPV16-E6 promoted Yap activation in all stages of keratinocyte differentiation. E6 activated the Rap1 small GTPase, which in turn promoted Yap activity. Since Rap1 does not mediate differentiation inhibition caused by E6, E6 may play a role in promoting cell growth through Rap1-Yap activation rather than preventing growth arrest through the disruption of differentiation. Altogether, the LKB1-NF2-Yap and E6-Rap1-Yap pathways represent two examples of a novel phenomenon, whereby the structure of a cell directly influences its gene expression and proliferation.
2

Understanding the biological function of phosphatases of regenerating liver, from biochemistry to physiology

Bai, Yunpeng January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Phosphatases of regenerating liver, consisting of PRL-1, PRL-2 and PRL-3, belong to a novel protein tyrosine phosphatases subfamily, whose overexpression promotes cell proliferation, migration and invasion and contributes to tumorigenesis and metastasis. However, although great efforts have been made to uncover the biological function of PRLs, limited knowledge is available on the underlying mechanism of PRLs’ actions, therapeutic value by targeting PRLs, as well as the physiological function of PRLs in vivo. To answer these questions, we first screened a phage display library and identified p115 RhoGAP as a novel PRL-1 binding partner. Mechanistically, we demonstrated that PRL-1 activates RhoA and ERK1/2 by decreasing the association between active RhoA with GAP domain of p115 RhoGAP, and displacing MEKK1 from the SH3 domain of p115 RhoGAP, respectively, leading to enhanced cell proliferation and migration. Secondly, structure-based virtual screening was employed to discover small molecule inhibitors blocking PRL-1 trimer formation which has been suggested to play an important role for PRL-1 mediated oncogenesis. We identified Cmpd-43 as a novel PRL-1 trimer disruptor. Structural study demonstrated the binding mode of PRL-1 with the trimer disruptor. Most importantly, cellular data revealed that Cmpd-43 inhibited PRL-1 induced cell proliferation and migration in breast cancer cell line MDA-MB-231 and lung cancer cell line H1299. Finally, in order to investigate the physiological function of PRLs, we generated mouse knockout models for Prl-1, Prl-2 and Prl-3. Although mice deficient for Prl-1 and Prl-3 were normally developed, Prl-2-null mice displayed growth retardation, impaired male reproductive ability and insufficient hematopoiesis. To further investigate the in vivo function of Prl-1, we generated Prl-1-/-/Prl-2+/- and Prl-1+/-/Prl-2-/- mice. Similar to Prl-2 deficient male mice, Prl-1-/-/Prl-2+/- males also have impaired spermatogenesis and reproductivity. More strikingly, Prl-1+/-/Prl-2-/- mice are completely infertile, suggesting that, in addition to PRL-2, PRL-1 also plays an important role in maintaining normal testis function. In summary, these studies demonstrated for the first time that PRL-1 activates ERK1/2 and RhoA through the novel interaction with p115 RhoGAP, targeting PRL-1 trimer interface is a novel anti-cancer therapeutic treatment and both PRL-1 and PRL-2 contribute to spermatogenesis and male mice reproductivity.

Page generated in 0.1142 seconds