• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 16
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal Population of Embryonic Stem Cells in "Hanging Drop" Culture for in-vitro Differentiation to Cardiac Myocytes

MIWA, Keiko, LEE, Jong-Kook, HIDAKA, Kyoko, SHI, Rong-qian, MORISAKI, Takayuki, KODAMA, Itsuo 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
2

Contactless Dielectrophoresis towards Drug Screening and Microdevice Development for Cell Sorting

Elvington, Elizabeth Ashcraft Savage 08 July 2013 (has links)
Firstly, this work demonstrates that contactless dielectrophoresis (cDEP) was useful to detect a reversal in the electrical phenotype of late-stage ovarian cancer cells to a profile similar to that of slow-growing early-stage ovarian epithelial cells after treatment with a non-toxic bioactive metabolite, sphingosine. Current chemotherapeutics are highly toxic to patients and can cause severe adverse side effects, so non-toxic treatments that could slow or reverse cancer growth would be advantageous. This is the first instance of cDEP for detecting induced changes in cell structure, showing its potential as a rapid, non-biomarker-based drug screening platform. Specifically, low frequency contactless dielectrophoresis devices previously designed by Sano et al were used to extract the crossover frequency and specific membrane capacitance of early and late stage mouse ovarian surface epithelial (MOSE-E and MOSE-L) cells when untreated, treated with the anti-cancer sphingosine (So) metabolite and with a generally cancer-supporting sphingosine-1-phosphate (S1P) metabolite. The specific membrane capacitance of MOSE-L cells treated with So decreased and the normalized crossover frequency increased to levels matching MOSE-E cells. Secondly, a new multilayer cDEP device featuring curved interdigitated electrode channels overlaying a straight sample channel for the purpose of cell sorting was designed, computationally modeled, fabricated, and tested. The goal of this design was to achieve continuous multi-stream sorting of cells, and preliminary testing demonstrated that prostate cancer PC3 cells were continuously deflected toward the top of the channel under an electric field, as predicted by the numerical model. / Master of Science
3

Microfluidic cell separation based on cell stiffness

Wang, Gonghao 07 January 2016 (has links)
Cell biophysical properties are a new class of biomarkers that can characterize cells into subgroups that indicate differences in phenotypes that may correlate with disease and cell state. Microfluidic biophysical cell sorters are platforms that utilize these newly developed biomarkers to expand biomedical capabilities for improvements in cell state detection and characterization. Cell biophysical properties are important indicators for cell state and function because they point to differences in cell structures, such as cytoskeletal arrangement and nuclear content. In particular, some diseases, such as cancer and malaria, can cause significant changes in cell biophysical properties. Therefore, cell biophysical properties have the potential to be used for disease diagnostics. Microfluidic systems which can interrogate these biophysical properties and exploit changes in biophysical properties to separate cells into subpopulations will provide important biomedical capabilities. In this combined theoretical and experimental investigation, we explore a new type of cell sorter which utilizes differences in biophysical properties of cells. These biophysical properties that can be utilized to sort cells include size, elasticity and viscosity. We invented a microfluidic system for continuous, label-free cell separation that utilizes variations in cell biophysical properties. A microfluidic channel is decorated by periodic diagonal ridges that are designed to compress flowing cells in rapid succession. The physical compression, in combination with hydrodynamic secondary flows induced by the ridged microfluidic channel, translates each cell perpendicular to the channel axis in proportion to its biophysical properties. Through careful experimental and computational studies, we found that the cell trajectories in the microfluidic cell sorter correlated to these biophysical properties. Furthermore, we examine the effect of channel design parameters under various experimental conditions to derive cell separation models that can be used to qualitatively predict cell sorting outcome. A variety of biophysical measurement tools, including atomic force microscopy and high-speed optical microscopy are used to directly characterize the heterogeneous population of cells before and after separation. Taken together, we describe the physical principles that our microfluidic approach can be effectively used to separate a variety of cell types. The major contribution is the creation and characterization of a novel microfluidic cell- sorting platform that utilizes cell biophysical properties to enrich cells into phenotypic subtypes. This innovative approach opens new ways for conducting rapid and low-cost cell analysis and disease diagnostics through biophysical markers.
4

Molecular mechanisms of neuronal homoeostasis in vivo

Seo, Sang soo January 2016 (has links)
Homeostatic plasticity is important in neurobiology for stabilising neuronal networks in the face of Hebbian forms of synaptic plasticity that are thought to mediate memory storage. Impairment of homeostatic plasticity has also been implicated in neurological diseases such as Rett syndrome and fragile X syndrome. Homeostatic plasticity can be achieved through scaling of the strength of synaptic connections between neurones or by changes in intrinsic excitability. While homeostatic plasticity has been studied mainly using in vitro preparations, it is for the most part not known whether changes of neural activity in vivo induce homeostatic changes. The molecular pathway responsible for homeostatic plasticity still remains unclear. In this thesis, I have used stereotaxic surgery to over express Kir2.1, an inwardly rectifying potassium channel, in vivo in the brains of adult mice. I show that the expression of Kir2.1 through adeno-associated virus (AAV) does not cause any adverse effects in the dentate gyrus nor the CA1 of the mouse hippocampus. I go on to use slice patch clamp methods to measure the change in electrical properties of granule cells in the dentate gyrus and pyramidal cells in CA1 caused by expression of Kir2.1. I show that the excitability of neurones expressing Kir2.1 was reduced compared to control neurones. By 2 weeks after virus injection the neurones showed homeostatic plasticity in response to Kir2.1 over expression. Interestingly, the mechanism of adaptation was different in different types of cells; dentate gyrus granule cells adapted through change in their intrinsic excitability, whereas CA1 pyramidal cells adapted by modifying the strength of their synaptic inputs. To establish whether induction of homeostatic plasticity is associated with changes in gene expression I used fluorescent activated cell sorting (FACs) to isolate pure population of neurones infected with viruses. I then sequenced RNA extracted from neurones expressing Kir2.1 and control neurones. Analysis of the RNAseq data revealed molecular candidates involved in homeostatic plasticity. In summary, I show that Kir2.1 over expression causes change in excitability and subsequent homeostatic plasticity in vivo. The mechanism of adaptation differs between cell types. RNAseq results identify novel candidates for future investigation.
5

Fabrication and Characterization of a Microfluidic Device to Ultrapurify Blood Samples

Tallerico, Marco 04 May 2015 (has links)
The improvement of blood cell sorting techniques in recent years have attracted the attention of many researchers due to the possible benefits that these methods can lead in biology, regenerative medicine, materials science and therapeutic area. In this work a cell sorting technique based on filtration is described. The separation occurs by means of a microfluidic device, suitably designed, manufactured and tested, that is connected to an external experimental set-up. The fabrication process can be divided in two parts: at first it is described the manufacturing process of a filtering membrane, with holes of specific size that allow the passage of only certain cell types. Following the microfluidic device is fabricated through the mechanical micromilling. The membrane and the microdevice are suitably bonded and tested by means of an external connection with syringe pumps that inject blood samples at specific flow rates. The device is designed to separate blood cells and tumor cells only by using differences in size and shape. In particular during the first experiments red blood cells and platelets are sorted from white blood cells; in the other experiments red blood cells and platelets are separated from white blood cells and tumor cells. The microdevice has proven to be very efficient, in fact a capture efficiency of 99% is achieved. For this reason it could be used in identification and isolation of circulating tumor cells, a very rare cancer cell type whose presence in the bloodstream could be symptom of future solid tumor formation. The various experiments have also demonstrated that tumor cells survive even after the separation treatment, and then the suffered stress during the sorting process does not harm the biological sample.
6

Paracrine Factors from Cultured Cardiac Cells Promote Differentiation of Embryonic Stem Cells into Cardiac Myocytes

Miwa, Keiko, Lee, Jong-Kook, Hidaka, Kyoko, Shi, Rong-qian, Itoh, Gen, Morisaki, Takayuki, Kodama, Itsuo 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
7

Fluorescence-Activated Cell Sorting as a Method to Isolate Ionocyte Populations from Gill Tissue

El-Sakhli, Ibragim 03 August 2018 (has links)
In freshwater fish, such as the rainbow trout (Oncorhynchus mykiss), higher ion concentrations in the body fluids relative to the dilute surrounding environment lead to diffusive ion loss that is countered by active ion uptake. Active ion uptake is achieved via specialised cells in the gill epithelium known as ionocytes, with the species studied to date exhibiting multiple ionocyte subtypes with specific complements of ion transport proteins. To better understand the functions and responses of each ionocyte subtype, methods are needed to isolate specific ionocyte subtypes. This thesis developed a method to use fluorescence-activated cell sorting (FACS) to isolate the peanut lectin agglutinin-positive (PNA+) ionocyte subtype of the trout gill, which is posited to be a base-secreting cell that takes up Cl- ions. A suspension of gill cells dissociated using ethylenediaminetetraacetic acid (EDTA) was labelled with biotinylated PNA that was detected using streptavidin conjugated to a fluorophore, and subjected to FACS to yield a population of PNA+ ionocytes of high viability and purity. To validate the utility of the approach, it was used in a proof-of-principle experiment to evaluate transcript abundance of cytosolic carbonic anhydrase (CAc) in PNA+ ionocytes in trout that were subjected to metabolic alkalosis. This experiment revealed that the relative transcript abundance of CAc was significantly elevated in PNA+ ionocytes of alkalotic trout relative to that of control trout (P = 0.001; N = 7), a response that is consistent with the expected role of PNA+ ionocytes in compensation for systemic alkalosis.
8

MicroRNA-based separation of cortico-fugal projection neuron-like cells derived from embryonic stem cells / マイクロRNAスイッチを用いた胎児幹細胞由来神経細胞からの皮質投射ニューロンの選別法の開発

Sunohara, Tadashi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22340号 / 医博第4581号 / 新制||医||1042(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 影山 龍一郎, 教授 井上 治久, 教授 上杉 志成 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
9

Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1 / LRTM1を用いたヒトES/iPS細胞由来機能的ドパミン神経前駆細胞の純化

Samata, Bumpei 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第20284号 / 医科博第75号 / 新制||医科||5(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 宮本 享, 教授 林 康紀, 教授 井上 治久 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
10

Immunomagnetic cell separation: further applications of the quadrupole magnetic cell sorter

Lara-Velasco, Oscar R. 07 November 2003 (has links)
No description available.

Page generated in 0.1026 seconds