• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 22
  • 9
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Perturbation in gene expression in arsenic-treated human epidermal cells

Udensi, Kalu Udensi 25 June 2013 (has links)
Arsenic is a universal environmental toxicant associated mostly with skin related diseases in people exposed to low doses over a long term. Low dose arsenic trioxide (ATO) with long exposure will lead to chronic exposure. Experiments were performed to provide new knowledge on the incompletely understood mechanisms of action of chronic low dose inorganic arsenic in keratinocytes. Cytotoxicity patterns of ATO on long-term cultures of HaCaT cells on collagen IV was studied over a time course of 14 days. DNA damage was also assessed. The percentages of viable cells after exposure were measured on Day 2, Day 5, Day 8, and Day 14. Statistical and visual analytics approaches were used for data analysis. In the result, a biphasic toxicity response was observed at a 5 μg/ml dose with cell viability peaking on Day 8 in both chronic and acute exposures. Furthermore, a low dose of 1 μg/ml ATO enhanced HaCaT keratinocyte proliferation but also caused DNA damage. Global gene expression study using microarray technique demonstrated differential expressions of genes in HaCaT cell exposed to 0.5 μg/ml dose of ATO up to 22 passages. Four of the up-regulated and 1 down-regulated genes were selected and confirmed with qRT-PCR technique. These include; Aldo-Keto Reductase family 1, member C3 (AKR1C3), Insulin Growth Factor-Like family member 1 (IGFL1), Interleukin 1 Receptor, type 2 (IL1R2) and Tumour Necrosis Factor [ligand] Super-Family, member 18 (TNFSF18), and down-regulated Regulator of G-protein Signalling 2 (RGS2). The decline in growth inhibiting gene (RGS2) and increase in AKR1C3 may be the contributory path to chronic inflammation leading to metaplasia. This pathway is proposed to be a mechanism leading to carcinogenesis in skin keratinocytes. The observed over expression of IGFL1 may be a means of triggering carcinogenesis in HaCaT keratinocytes. In conclusion, it was established that at very low doses, arsenic is genotoxic and induces aberrations in gene expression though it may appear to enhance cell proliferation. The expression of two genes encoding membrane proteins IL1R2 and TNFSF18 may serve as possible biomarkers of skin keratinocytes intoxication due to arsenic exposure. This research provides insights into previously unknown gene markers that may explain the mechanisms of arsenic-induced dermal disorders including skin cancer / Environmental Sciences / D. Phil. (Environmental science)
42

Perturbation in gene expression in arsenic-treated human epidermal cells

Udensi, Kalu Udensi 25 June 2013 (has links)
Arsenic is a universal environmental toxicant associated mostly with skin related diseases in people exposed to low doses over a long term. Low dose arsenic trioxide (ATO) with long exposure will lead to chronic exposure. Experiments were performed to provide new knowledge on the incompletely understood mechanisms of action of chronic low dose inorganic arsenic in keratinocytes. Cytotoxicity patterns of ATO on long-term cultures of HaCaT cells on collagen IV was studied over a time course of 14 days. DNA damage was also assessed. The percentages of viable cells after exposure were measured on Day 2, Day 5, Day 8, and Day 14. Statistical and visual analytics approaches were used for data analysis. In the result, a biphasic toxicity response was observed at a 5 μg/ml dose with cell viability peaking on Day 8 in both chronic and acute exposures. Furthermore, a low dose of 1 μg/ml ATO enhanced HaCaT keratinocyte proliferation but also caused DNA damage. Global gene expression study using microarray technique demonstrated differential expressions of genes in HaCaT cell exposed to 0.5 μg/ml dose of ATO up to 22 passages. Four of the up-regulated and 1 down-regulated genes were selected and confirmed with qRT-PCR technique. These include; Aldo-Keto Reductase family 1, member C3 (AKR1C3), Insulin Growth Factor-Like family member 1 (IGFL1), Interleukin 1 Receptor, type 2 (IL1R2) and Tumour Necrosis Factor [ligand] Super-Family, member 18 (TNFSF18), and down-regulated Regulator of G-protein Signalling 2 (RGS2). The decline in growth inhibiting gene (RGS2) and increase in AKR1C3 may be the contributory path to chronic inflammation leading to metaplasia. This pathway is proposed to be a mechanism leading to carcinogenesis in skin keratinocytes. The observed over expression of IGFL1 may be a means of triggering carcinogenesis in HaCaT keratinocytes. In conclusion, it was established that at very low doses, arsenic is genotoxic and induces aberrations in gene expression though it may appear to enhance cell proliferation. The expression of two genes encoding membrane proteins IL1R2 and TNFSF18 may serve as possible biomarkers of skin keratinocytes intoxication due to arsenic exposure. This research provides insights into previously unknown gene markers that may explain the mechanisms of arsenic-induced dermal disorders including skin cancer / Environmental Sciences / D. Phil. (Environmental science)
43

Therapieoptimierung aggressiver Non-Hodgkin-Lymphome durch modifizierte anti-CD20-Antikörper: Präklinische Evaluation von GA101 / Therapy optimization of aggressive non-Hodgkin's lymphoma: Preclinical evaluation of GA101

Schroer, Hinrich 21 November 2012 (has links)
No description available.
44

Role of a putative bacterial lipoprotein in Pseudomonas aeruginosa-mediated cytotoxicity toward airway cells

Akhand, Saeed Salehin January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The patients with Cystic fibrosis (CF), an inherent genetic disorder, suffer from chronic bacterial infection in the lung. In CF, modification of epithelial cells leads to alteration of the lung environment, such as inhibition of ciliary bacterial clearance and accumulation of thickened mucus in the airways. Exploiting these conditions, opportunistic pathogens like Pseudomonas aeruginosa cause lifelong persistent infection in the CF lung by forming into antibiotic-resistant aggregated communities called biofilms. Airway infections as well as inflammation are the two major presentations of CF lung disease. P. aeruginosa strains isolated from CF lungs often contain mutations in the mucA gene, and this mutation results in higher level expression of bacterial polysaccharides and toxic lipoproteins. In a previous work, we have found a putative lipoprotein gene (PA4326) which is overexpressed in antibiotic-induced biofilm formed on cultured CF-derived airway cells. In the current work, we speculated that this particular putative lipoprotein affects cellular cytotoxicity and immune-stimulation in the epithelial cells. We found that mutation of this gene (ΔPA4326) results in reduced airway cell killing without affecting other common virulence factors.Moreover, we observed that this gene was able to stimulate secretion of the proinflammatory cytokine IL-8 from host cells. Interestingly, we also found that ΔPA4326 mutant strains produced less pyocyanin exotoxin compared to the wild type. Furthermore, our results suggest that PA4326 regulates expression of the pyocyanin biosynthesis gene phzM, leading to the reduced pyocyanin phenotype. Overall, these findings implicate PA4326 as a virulence factor in Pseudomonas aeruginosa. In the future, understating the molecular interplay between the epithelial cells and putative lipoproteins like PA4326 may lead to development of novel anti-inflammatory therapies that would lessen the suffering of CF patients.
45

Soypeptide lunasin in cytokine immunotherapy for lymphoma

Lewis, David 01 August 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Immunostimulatory cytokines can enhance anti-tumor immunity and are part of the therapeutic armamentarium for cancer treatment. We previously reported that chemotherapy-treated lymphoma patients acquire a deficiency of Signal Transducer and Activator of Transcription 4 (STAT4), which results in defective IFNy production during clinical immunotherapy. With the goal of further improvement in cytokine-based immunotherapy, we examined the effects of a soybean peptide called lunasin that exhibits immunostimulatory effects on natural killer cells (NKCs). Peripheral blood mononucleated cells (PBMCs) from healthy donors and chemotherapy-treated lymphoma patients were stimulated with or without lunasin in the presence of IL-12 or IL-2. NK activation was evaluated, and its tumoricidal activity was assessed using in vitro and in vivo tumor models. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the histone modification of gene loci that are regulated by lunasin and cytokine. Adding lunasin to IL-12- or IL-2-cultuted NK cells demonstrated synergistic effects in the induction of IFNG and genes involved in cytotoxicity. The combination of lunasin and cytokines (IL-12 plus IL-2) was capable of restoring IFNy production by NK cells from post-transplant lymphoma patients. In addition, NK cells stimulated with lunasin plus cytokines have higher tumoricidal activity than those stimulated with cytokines alone using in vitro tumor models. The underlying mechanism responsible for the effects of lunasin on NK cells is likely due to epigenetic modulation at target gene loci. Lunasin represents a different class of immune modulating agent that may augment the therapeutic responses mediated by cytokine-based immunotherapy.

Page generated in 0.0807 seconds