Spelling suggestions: "subject:"cellular algebra"" "subject:"acellular algebra""
1 |
Axiomatic approach to cellular algebrasAhmadi, Amir 01 1900 (has links)
Les algèbres cellulaires furent introduite par J.J. Graham et G.I. Lehrer en 1996. Elles forment
une famille d’algèbres associatives de dimension finie définies en termes de « données
cellulaires » satisfaisant certains axiomes. Ces données cellulaires, lorsqu’elles sont identifiées
pour une certaine algèbre, permettent une construction explicite de tous ses modules
simples, à isomorphisme près, et de leurs couvertures projectives. Dans ce mémoire, nous
définissons ces algèbres cellulaires en introduisant progressivement chacun des éléments constitutifs
d’une façon axiomatique.
Deux autres familles d’algèbres associatives sont discutées, à savoir les algèbres quasihéréditaires
et celles dont les modules forment une catégorie de plus haut poids. Ces familles
furent introduites durant la même période de temps, au tournant des années quatre-vingtdix.
La relation entre ces deux familles ainsi que celle entre elles et les algèbres cellulaires
sont prouvées. / Cellular algebras were introduced by J.J. Graham and G.I. Lehrer in 1996. They are a class of
finite-dimensional associative algebras defined in terms of a “cellular datum” satisfying some
axioms. This cellular datum, when made explicit for a given associative algebra, allows for
the explicit construction of all its simple modules, up to isomorphism, and of their projective
covers. In this work, we define these cellular algebras by introducing each building block of
the cellular datum in a fairly axiomatic fashion.
Two other families of associative algebras are discussed, namely the quasi-hereditary
algebras and those whose modules form a highest weight category. These families were
introduced at about the same period. The relationships between these two, and between
them and the cellular ones, are made explicit.
|
2 |
Carquois et relations pour les blocs réguliers des algèbres blobPetit, Philippe 06 1900 (has links)
Les algèbres de Temperley–Lieb de type B, aussi appelées algèbres de Temperley–Lieb à une frontière, sont une famille d’algèbres associatives unitaires de dimension finie généralisant les algèbres de Temperley–Lieb. Elles ont été introduites en 1992 par P.P. Martin et H. Saleur pour la résolution de modèles en mécanique statistique [MS94], mais elles ont rapidement pris de l’importance en théorie de la représentation suite aux travaux de P.P. Martin et D. Woodcock [MW00] [MW03], qui montrent qu’elles s’obtiennent comme quotient d’al- gèbres de Hecke cyclotomiques et qui observent des liens profonds avec la théorie de Lie. Ces quotients sont liés aux algèbres de Khovanov–Lauda–Rouquier (KLR) par les travaux de Brundan et Kleshchev [BK09]; c’est à l’aide des algèbres KLR et de leur formulation diagrammatique que les résultats de ce mémoire seront obtenus. Elles seront maintenant appelées algèbres blob.
Ce mémoire porte sur la théorie de la représentation de certains blocs des algèbres blob. Plus précisément, nous trouvons les carquois et relations décrivant les catégories de modules des blocs réguliers en caractéristique nulle. Les résultats sont obtenus par calcul diagram- matique, en utilisant la base cellulaire construite par Plaza–Ryom-Hansen [PRH14] et les idempotents primitifs de Hazi–Martin–Parker [HMP21].
Structure du mémoire: Le premier chapitre rappelle brièvement les notions algébriques qui seront utilisées. Le deuxième chapitre présente les algèbres blob de façon algébrique et diagrammatique, puis plusieurs résultats connus sur celles-ci. Les troisième et quatrième chapitres contiennent tous les résultats originaux, c’est-à-dire le calcul du carquois et relations pour les blocs réguliers. / The Temperley–Lieb algebras of type B, also known as one-boundary Temperley–Lieb al- gebras, are a family of unitary associative algebras of finite dimension that generalize the Temperley–Lieb algebras. They were introduced in 1992 by P.P Martin and H. Saleur for solving models in statistical mechanics [MS94] but they quickly became important in rep- resentation theory following the work of P.P. Martin and D. Woodcock [MW00] [MW03], who showed that they can be realized as quotients of cyclotomic Hecke algebras and observed deep connections with Lie theory. These quotients are related to Khovanov–Lauda–Rouquier (KLR) algebras through the work of Brundan and Kleshchev [BK09]; it is with the help of KLR algebras and their diagrammatic presentation that the results of this thesis will be obtained. They will now be referred to as blob algebras.
This thesis focuses on the representation theory of certain blocks of blob algebras. Specif- ically, we find the quivers and relations describing the module categories of regular blocks in characteristic zero. The results are obtained through diagrammatic calculus, using the cellular basis constructed by Plaza–Ryom-Hansen [PRH14] and the primitive idempotents of Hazi–Martin–Parker [HMP21].
Structure: The first chapter briefly recalls the algebraic concepts that will be used. The second chapter presents blob algebras in both algebraic and diagrammatic ways, along with several known results about them. The third and fourth chapters contain all the original results, namely the calculation of quivers and relations for regular blocks.
|
Page generated in 0.0564 seconds