• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of cerebellar LTP at parallel fiber : Purkinje cell synapses in spatial navigation / Rôle du LTP cérébelleux à fibre parallèle : synapses Purkinje cellulaires dans la navigation spatiale

Lefort, Julie 18 July 2014 (has links)
La navigation spatiale peut être subdivisée en deux processus: la construction d’une représentation mentale de l’espace à partir de l’exploration de l’environnement d'une part, et l’utilisation de cette représentation de façon à produire le trajet le plus adapté pour rejoindre le lieu souhaité d'autre part. Lors de l’exploration de l’environnement, des informations externes et des informations de mouvement propre (i.e. vestibulaires et proprioceptives) sont combinées pour former la carte cognitive. Depuis longtemps des études suggèrent que le cervelet participe à la navigation spatiale mais son rôle a souvent été confiné à l’exécution motrice. Notre équipe a étudié des souris mutantes L7-PKCI présentant un déficit de plasticité synaptique de type dépression à long terme (DLT) au niveau des synapses entre fibres parallèles et cellules de Purkinje du cortex cérébelleux. Ces travaux ont montré que les souris présentent à la fois un déficit dans l'optimisation de la trajectoire mais également dans le maintien de la carte cognitive formée dans l'hippocampe. En effet, les propriétés de décharge des cellules de lieu de l'hippocampe sont affectées chez ces souris exclusivement lorsque celles-ci doivent naviguer en se reposant sur les informations provenant de leur mouvement propre, c'est à dire quand elles explorent l'environnement dans le noir. A ces mêmes synapses, une plasticité de type potentialisation à long terme (PLT) a été observée et permet (avec la DLT) la modulation bidirectionelle de l’efficacité synaptique. La plasticité bidirectionnelle est un processus clé dans les modèles théoriques de type « filtre adaptatif » de traitement de l’information par le cervelet. Selon ces modèles, l’absence de PLT ou DLT devrait affecter de façon similaire la plasticité bidirectionnelle et conduire ainsi à des déficits comparables. Pour tester cette hypothèse, nous avons étudié les conséquences fonctionnelles d’un déficit de type PLT au niveau de la même synapse entre fibre parallèle et cellule de Purkinje. Nous avons utilisé la lignée transgénique L7-PP2B, spécifiquement déficitaire pour cette plasticité.Malgré un léger déficit moteur révélé exclusivement sur le rotarod, les capacités de navigation des souris L7-PP2B ne sont pas affectées dans une tâche de navigation en labyrinthe aquatique de type piscine de Morris. Les propriétés des cellules de lieu de l’hippocampe des souris L7-PP2B ont ensuite été caractérisées lors de l’exploration d’une arène circulaire dans différentes conditions environnementales. Contrairement à celles des souris L7-PKCI, les propriétés des cellules de lieux des souris L7-PP2B ne sont pas affectées lorsque les souris ne peuvent utiliser que les informations de mouvement propre pour s’orienter, c'est à dire dans le noir. Par contre, les cellules de lieux des souris L7-PP2B présentent une instabilité en l’absence de toute manipulation d’indice environnemental, dans 23% des sessions d’enregistrement. Cette instabilité, absente chez les souris contrôles, se manifeste de façon imprévisible dans un environnement familier et est caractérisée par une rotation angulaire cohérente de l’ensemble des cellules de lieux enregistrées. Ces données suggèrent qu’en l’absence de PLT cérébelleuse la représentation spatiale de l’hippocampe n’est pas ancrée de façon stable aux indices externes proximaux. Ces résultats, associés à ceux des souris L7-PKCI indiquent que le cervelet contribue de manière complexe à la fois à la représentation spatiale hippocampique et aux capacités de navigation et que DLT et PLT jouent probablement des rôles différents dans ces processus. / Spatial navigation can be divided into two processes: building a spatial representation from the environment exploration and using this representation to produce an adapted trajectory toward a goal. During the environment exploration, external and self-motion information (i.e. vestibular and proprioceptive) are combined to form the spatial map. It has long been suggested that the cerebellum participates in spatial navigation but its role has often been confined to motor execution. Our team has studied L7-PKCI mice which lack a plasticity mechanism (long term depression (LTD)) at parallel fiber-Purkinje cell synapses in the cerebellar cortex. These works have shown that L7-PKCI mice present a deficit in trajectory optimization as well as in the maintenance of the cognitive map in the hippocampus. Indeed in these mice, the firing properties of hippocampal place cells are affected specifically when mice have to rely on self-motion information, i.e. when exploring the environment in the dark.A these same synapses, another type of plasticity (long term potentiation (LTP)) has been described, and allows (with LTD) the bidirectional modulation of the synaptic efficiency. Bidirectional plasticity is a key element of the ‘adaptive filter’ theoretical models of cerebellar information processing. According to these models, a lack of LTP or LTD should similarly affect bidirectional plasticity and result in comparable deficits. To test this prediction, we investigated the functional consequences of a deficit of LTP at parallel fiber-Purkinje cell synapses using the L7-PP2B mice model, specifically impaired for this plasticity.In spite of a mild motor adaptation deficit, revealed on the rotarod task, spatial learning of L7-PP2B mice was not impaired in the watermaze task. Hippocampal place cell properties of L7-PP2B mice were characterized during exploration of a circular arena, following different experimental manipulations. In contrast to mice lacking cerebellar LTD, place cells properties of L7-PP2B mice were not impaired when mice had to rely on self-motion cues, i.e. in the dark. Surprisingly, L7-PP2B place cells displayed instability in the absence of any proximal cue manipulation in 23 % of the recording sessions. This instability occurred in an unpredictable way in a familiar environment and was characterized each time by a coherent angular rotation of the whole set of recorded place cells. These data suggest that, in the absence of cerebellar LTP, hippocampal spatial representation cannot be reliably anchored to the proximal cue. These results along with those from L7­PKCI mice, indicate that the cerebellum contributes to both hippocampal representation and subsequent navigation abilities and that LTP and LTD are likely to play different roles in these processes.
2

Modulation de la fidélité temporelle de la décharge neuronale par l'activité GABAergique et le système des endocannabinoïdes dans l'hippocampe

Dubruc, Franck 15 February 2013 (has links)
Les neurones pyramidaux sont constamment bombardés par une activité GABAergique spontanée qui régule le comportement de la décharge neuronale. Des résultats récents ont montré que cette activité spontanée GABAergique pouvait moduler l'excitabilité mais aussi la fidélité temporelle de décharge d'un neurone définie comme sa capacité à reproduire à l'identique un patron de décharge lors de la présentation répétée d'un même stimulus. D'autre part, de nombreuses études ont caractérisé l'existence d'une plasticité à court-terme de l'activité GABAergique médiée par les endocannabinoïdes. Ce phénomène, connu sous le nom de DSI (Depolarization-induced Suppression of Inhibition) a été décrit dans de nombreuses structures comme le cervelet, le cortex ou encore l'hippocampe.Au cours de ma thèse, j'ai étudié quelles pouvaient être les conséquences fonctionnelles de la production d'endocannabinoïdes sur l'activité neuronale et en particulier sur la fidélité temporelle de la décharge. Dans un premier temps nous avons montré que le profil de décharge in vivo des cellules de lieu de l'hippocampe pouvait induire, quand il était rejoué in vitro, le phénomène de DSI. Nous avons observé ensuite que cette diminution transitoire de la transmission GABAergique était associée à une amélioration de la fidélité temporelle de la décharge.En conclusion, nos travaux suggèrent que l'activité des cellules de lieu de la région CA1 de l'hippocampe peut provoquer, par la synthèse et la libération rétrograde d'endocannabinoïdes, une diminution à court-terme de l'activité GABAergique reçue par ces cellules avec pour conséquence des modifications de la précision temporelle de la décharge neuronale. / Pyramidal neurons are constantly bombarded by spontaneous GABAergic activity that regulates their firing behaviour. Recent results have shown that this spontaneous GABAergic activity can modulate both the excitability and the temporal fidelity of action potential discharge (Caillard, 2011). Many studies have characterized the existence of short-term plasticity of GABAergic activity mediated by endocannabinoids. This phenomenon, known as DSI (Depolarization-induced Suppression of Inhibition) has been described in many brain structures such as the cerebellum, cortex or hippocampus (for review see Freund et al., 2003; Kano et al. 2009).During my PhD thesis, I have evaluated the functional consequences of the endocannabinoid production on neuronal activity and in particular on the spike-time precision of the CA1 pyramidal neurons. As a first step we have shown that the in vivo firing pattern of place cells could induce, when replayed in vitro, a decrease in spontaneous GABA release by the endocannabinoid signalling pathway. We then observed that this transient depression of GABAergic transmission improved spike-time precision of CA1 pyramidal neurons.In conclusion, our work suggests that, in the hippocampus, CA1 place cell firing can induce, following the synthesis and retrograde release of endocannabinoids, a short-term decrease in the GABAergic activity received by these cells that consequently affects their spike-time precision.
3

Electrophysiologie de l’hippocampe in vivo pendant le comportement : étude de l'impact de la locomotion sur le potentiel de membrane des cellules pyramidales de CA1 de l'hippocampe chez la souris naviguant dans un environnement virtuel / Electrophysiology of the hippocampus in vivo during the behavior : study of the impact of locomotion on hippocampal CA1 pyramidal cells' membrane potentials in mice navigating a virtual environment

Michon, Francois-Xavier 29 November 2018 (has links)
La locomotion spontanée a une forte influence sur l’état du réseau hippocampique et joue un rôle crucial lors de l’intégration de l'information spatiale. Différents états d'attention ou de comportement au cours de l'éveil peuvent modifier la réponse des neurones aux stimuli sensoriels ainsi que les performances dans les tâches associées. Au cours du mouvement (mov.) le potentiel de champ local de l’hippocampe est caractérisé par des oscillations de fréquence thêta et les cellules pyramidales (CPs) présentent une décharge spécifique à la localisation de l'animal dans un environnement donné. Cependant, les déterminants intracellulaires liés à l'activation des cellules pyramidales de CA1 pendant du mov. sont peu connus. Dans ce travail de thèse, nous avons enregistré le potentiel de membrane (Vm) des CPs de CA1 chez des souris qui alternaient spontanément entre des périodes de mov. et des périodes d’immobilité lors d’une tâche de navigation spatiale virtuelle. Nous avons trouvé une modulation opposée du Vm entre les CPs de CA1 qui déchargeaient de manière régulière par rapport à celles qui déchargeaient en bouffées de potentiels d’action. Les cellules qui déchargeaient de manière régulière étaient plus dépolarisées et déchargeaient plus pendant le mov.comparé à l’immobilité. Les cellules déchargeant en bouffées de potentiels d’action, préférentiellement inhibées pendant les sharp wave-ripples, étaient hyperpolarisées de façon dépendante à la vitesse pendant le mov.. Cette inhibition dépendante de la vitesse pourrait permettre d’augmenter le rapport signal sur bruit afin de coder l’information spatiale de manière plus efficace pendant le mov.. / Spontaneous locomotion strongly influences the state of the hippocampal network and is critically important for spatial information coding. In neocortex, different attentional or behavioral states during arousal can modify neurons responses to sensorial stimuli and associated task performance. During locomotion, the local field potential of the hippocampus is characterized by theta frequency oscillations (5-12 Hz) and the pyramidal neurons present a specific discharge to the localization of the animal in environments. However, the intracellular determinants of CA1 pyramidal cells activation during locomotion are poorly understood. Here we recorded the membrane potential of CA1 pyramidal cells (PCs) while non-overtrained mice spontaneously alternated between periods of movement and immobility during a virtual spatial navigation task. We found opposite membrane polarization between bursting and regular firing CA1 PCs during movement. Regular firing CA1 PCs were more depolarized and fired at higher frequency during movement compared to immobility while bursting CA1 PCs, preferentially inhibited during sharp wave ripples, were hyperpolarized during movement in a speed dependent manner. This speed-dependent suppression of a subpopulation of CA1 PCs could enhance signal to noise ratio for efficient spatial coding during locomotion.

Page generated in 0.0566 seconds