• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 14
  • 6
  • Tagged with
  • 82
  • 82
  • 82
  • 55
  • 52
  • 35
  • 30
  • 28
  • 22
  • 21
  • 21
  • 18
  • 18
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la différenciation des cellules souches hématopoiétiques dans différents environnements

Çelebi, Betül 18 April 2018 (has links)
La transplantation de cellules souches hématopoïétiques de sang de cordon ombilical ne s'est pas révélée être favorable pour la reprise des neutrophiles et des plaquettes. L'expansion des cellules hématopoïétiques (CD34+) et leur différenciation en mégacaryocytes (MKs) ont été optimisées dans notre laboratoire. Par contre, l'expansion des MKs avec des cocktails de cytokines atteint rapidement un plateau. Pour pallier ce problème, de nouvelles stratégies doivent être étudiées pour augmenter l'expansion des cellules CD34+ et MKs ex vivo. L'objectif principal de ce projet était de maximiser l'expansion des progéniteurs myéloïdes et MKs en amplifiant les cellules CD34+ en présence de cellules et/ou protéines normalement présentes dans la moelle osseuse (MO) et pour éventuellement améliorer la reprise hématopoïétique à court terme après transplantation. Plusieurs stratégies ont été proposées pour ce projet de doctorat afin de favoriser les expansions des progéniteurs myéloïdes et MKs en présence des cocktails de cytokine : de développer un environnement endostéale en introduisant la co-culture avec les cellules souches mésenchymateuses (CSMs) de la MO, d'évaluer aussi différentes protéines de la matrice extracellulaire (MEC) afin de stimuler la croissance ex vivo, et de développer un bioréacteur qui recrée partiellement un microenvironnement similaire à la MO in vitro. Les résultats ont démontré que l'expansion des progéniteurs hématopoïétiques (PHs) était généralement meilleure dans les conditions qui ne nécessitent pas de contact avec des CSMs irradiées. Cette étude démontre pour la première fois que les CSMs se différencient en pseudo-ostéoblastes après irradiation (14 Gray) ce qui affecte la sécrétion de la neurotrophine-3 et de 1' insuline growth factor binding protein-2, afin de promouvoir l'expansion des PHs. Deuxièmement, nos résultats avec les protéines de la MEC ont démontré que l'utilisation du mélange protéique 4MECp (collagène type I et IV, laminine, fibronectine) permet aussi augmenter l'expansion des PHs. Finalement, nous avons conçu et validé un système de co-culture avec circulation en trois dimensions qui a favorisé l'expansion des PHs. En conclusion, cette étude de doctorat démontre que recréer partiellement la MO in vitro peut améliorer l'expansion des PH myéloides et mégacaryocytaires à partir de cellules CD34+. Cette étude confirme aussi l'importance qu'ont les CSMs, ostéoblastes et protéines MEC sur la différenciation et la prolifération des PHs.
2

Les facteurs associés au stress, à la fatigue et la vigueur suite à une greffe de cellules souches hématopoïétiques chez des adultes atteints d'un cancer hématologique

Robert, France 13 April 2018 (has links)
La greffe de cellules souches hématopoietiques (CSH) est un traitement intensif pour des désordres hématologiques et des tumeurs solides réfractaires. La fatigue est l'un des symptômes souvent rapporté et les facteurs associés à ce phénomène sont peu connus. Alors que le modèle des systèmes de Neuman et Fawcett (2002) en sciences infirmières permet l'agencement des concepts de l'étude, la théorie de stress de (Herbert & Cohen, 1996) permet de valider l'objectif principal de cette étude qui est de vérifier sa capacité à prédire la fatigue et le vigueur des personnes qui ont reçu une greffe de cellules souches hématopoietiques. L'objectif secondaire est de décrire la relation entre le niveau d'hémoglobine et la fatigue. Un total de 83 participants adultes a été recruté. Les stresseurs liés au cancer (β = 0,29; p < 0,05) expliquent 16 % de la fatigue après une greffe. Pour la vigueur, l'exercice physique (β = 0,30; p < 0,001), la perception d'une vie sociale satisfaisante (β = 0,23; p < 0,05), le fait de travailler (β = 0,18; p < 0,05) et un bas niveau de détresse émotionnelle (β = -0,21; p < 0,01) expliquent 42 % de la variance de la vigueur. Ainsi, des variables psychosociales liées au stress expliquent la fatigue persistante après une greffe de CSH. De plus, une relation significative a été trouvée entre le niveau d'hémoglobine (r = -0,33; p < 0,01) et la fatigue. En utilisant le modèle des systèmes de Neuman et Fawcett, l'infirmière peut développer pour ses patients, des interventions primaires, secondaires et tertiaires visant à diminuer les effets négatifs des stresseurs pouvant conduire à la fatigue. Ces interventions infirmières pourraient aussi être centrées sur des stratégies qui permettraient d'améliorer le niveau d'énergie (la vigueur) par la pratique de l'exercice physique et une approche globale de la gestion de stress.
3

Caractérisation de l'impact de la culture sur le potentiel thrombopoïétique des cellules souches de sang de cordon

Émond, Hélène 19 April 2018 (has links)
Beaucoup d’espoir repose sur le domaine de la transplantation de cellules souches issues de sang de cordon ombilical. En effet, malgré les avancées remarquables survenues ces dernières années, le retard de la reprise des plaquettes et des neutrophiles persiste comme inconvénient majeur à surmonter. Afin d’améliorer la prise de greffe et d’accélérer la récupération des cellules hématopoïétiques, des thérapies cellulaires se basant sur la croissance et la différenciation des cellules souches hématopoïétiques sont à l’étude. Ainsi, avec un nombre plus élevé de cellules qui ont déjà entamé leur différenciation, la récupération du système hématopoïétique devrait être accélérée. Ce mémoire présente une stratégie d’expansion des cellules qui favorise la voie mégacaryocytaire grâce à un cocktail de cytokines optimisé et à une température d’incubation de 39°C. La co-transplantation de cellules expansionnées sous ces conditions optimales avec des cellules non-expansionnées a permis d’accélérer la reprise plaquettaire chez un modèle murin. / Strong hope resides in the field of umbilical cord blood hematopoietic stem cell transplantation. Although many remarkable advances were achieved in the past years, the prolonged delay in neutrophils and platelets recovery is still a major issue to overcome. To enhance engraftment and accelerate hematopoietic recovery, the growth and differentiation of hematopoietic stem cells are studied as the funding of cellular therapies. Hence, with a higher number of cells, that already entered their own differentiation pathway, recovery of mature hematopoietic cells should be accelerated. This thesis presents an expansion strategy for hematopoietic stem cell that favors the megakaryocytic lineage through an optimized cytokine cocktail and an incubation temperature of 39°C. Finally, the co-transplantation of cells expanded under these conditions along with non-expanded cells accelerated platelet recovery in a murine model for stem cell transplantation.
4

Les effets du peptide MTPG-43 sur les cellules mégacaryocytaires humaines

Ste-Marie, Alexandre 17 April 2018 (has links)
La mégacaryopoïèse est le nom donné à la différenciation des cellules souches hématopoïétiques (CSHs) en mégacaryocytes (MCs). Elles sont les cellules spécialisées précurseures des plaquettes sanguines. Au cours de leur maturation, les MCs entreprennent plusieurs rondes successives de réplication d'ADN. Ce phénomène est appelé endomitose. De récentes évidences suggèrent que les MCs endomitotiques seraient incapables de compléter leur division cellulaire. Dans le cadre de ce projet de recherche, il a été démontré que la surproduction du peptide MTPG-43 dans des lignées leucémiques humaines entraîne une augmentation du volume cytoplasmique et un changement de morphologie cellulaire, rappelant ainsi certaines acquisitions du MC différencié. Fusionné ou non à des marqueurs fluorescents, la surexpression transgénique du peptide dans les lignées exprimant un phénotype mégacaryocytaire entraîne un accroissement de la taille des cellules sans pour autant faire intervenir une augmentation du degré de ploïdie nucléaire. N'affectant pas la viabilité, l'accumulation du peptide à la membrane cytoplasmique semble rendre les cellules plus labiles. L'expression du peptide dans des MCs dérivés de cultures de CSHs de sang de cordon à l'aide d'un vecteur d'expression adénoviral n'a cependant pas permis d'accroître la production de plaquettes in vitro. Ce peptide demeure toutefois un outil moléculaire intéressant pour approfondir et élucider les mécanismes biologiques qui provoquent le gigantisme cellulaire.
5

Anémie de Fanconi : thérapie génique par les cellules souches hématopoïétiques

Habi, Ouassila 13 April 2018 (has links)
L'anémie de Fanconi (AF) est une pathologie génétique rare (1/350 000 naissances), transmise selon le mode récessif. Son tableau clinique regroupe de nombreuses malformations congénitales, une aplasie médullaire, une pancytopénie et une prédisposition accrue aux cancers. Au plan cellulaire, une mutation sur l'un des treize gènes Fanconi suffit à induire une instabilité chromosomique et une hypersensibilité aux agents pontant l'ADN. La perte de fonction des protéines Fanconi est probablement responsable du défaut d'autorenouvellement des cellules souches hématopoïétiques (CSH) et de l'état pro-apoptotique des progéniteurs médullaires. Les principaux traitements ont une très faible efficacité et induisent de dangereuses complications (toxicité, leucémies). La thérapie génique qui consiste à introduire ex vivo dans les CSH, une copie fonctionnelle du gène Fanconi altéré, apparaît ici comme le traitement alternatif le plus prometteur. Les premiers travaux effectués dans le laboratoire et confirmés pas d'autres, ont montré que la correction génique ex vivo est néfaste pour les CSH Fanconi. Une nouvelle approche thérapeutique a été mise en place, consistant à introduire la copie fonctionnelle du gène altéré directement in vivo, par injection intra-fémorale (IIF). Cette technique novatrice permet de délivrer le gène dans le milieu natif des CSH, leur évitant le stress induit par la culture. Après l'IIF de virions porteurs du gène EGFP (enhanced green fluorescent protein), des analyses sanguines mensuelles montrent une augmentation régulière de la fluorescence, confirmant l'efficacité technique du transfert génique in vivo. L'étape suivante consistait en l'injection du gène correcteur FancC, en fusion avec le marqueur EGFP (FancC-EGFP), dans des souris FancC-/-, FancA-/- et sauvages. L'expression sanguine de la protéine FANCC-EGFP confirme la transduction de cellules médullaires. L'efficacité de correction est évaluée lors de tests de survie des souris aux injections intra-péritonéales d'un agent pontant l'ADN : la mitomycine-C (MMC), sur une période de quinze semaines. Ce traitement vise à évaluer l'effet correcteur de la transduction et la fonctionnalité de la protéine transgénique, seules les cellules corrigées seront en mesure de restaurer l'intégrité de leur ADN et de proliférer. La nature des cellules corrigées a été analysée au cours de transplantations successives. Les résultats démontrent que les CSH FancC-/- recouvrent, après correction in vivo, par le transgène FancC-EGFP, une fonctionnalité semblable à celle des sauvages. Les résultats préliminaires obtenus dans le modèle murin aplasique confirment l'efficacité de la correction génique et sont particulièrement encourageants puisqu'ils permettent d'envisager l'IIF comme une nouvelle approche thérapeutique pour le traitement de l'AF.
6

Étude des effets de l'hyperthermie légère sur la prolifération et la différenciation des cellules hématopoïétiques CD34⁺ issues de sang de cordon ombilical

Boucher, Jean-François 12 April 2018 (has links)
La mégacaryopoïèse est le mécanisme par lequel les cellules souches hématopoïétiques se différencient en cellules mégacaryocytaires. Notre équipe a récemment découvert que la culture des cellules CD34+ issus de sang de cordon ombilical sous condition d'hyperthermie légère (39°C) accélère la différenciation des mégacaryocytes. Le but de ces travaux était de mieux caractériser l'effet de l'hyperthermie sur nos cellules et d'identifier le mécanisme d'action sur la mégacaryopoïèse. Nous avons découvert que l'impact sur la différenciation mégacaryocytaire était rapide et que l'optimisation du temps de culture à 39°C augmentait le nombre de mégacaryocytes. L'hyperthermie légère avait peu d'effets sur la viabilité cellulaire mais diminuait légèrement le degré de ploïdie des mégacaryocytes. De plus, les cellules maintenues à 39°C avaient un temps moyen de division plus court et une augmentation significative du nombre de cellules en cycle cellulaire actif. Finalement, une analyse par PCR a révélé une diminution d'expression de plusieurs gènes régulant le cycle cellulaire.
7

Mise au point d'un modèle d'étude des bases moléculaires de l'auto-renouvellement des cellules souches hématopoïétiques induit par HOXB4

Laurin, Mélanie January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
8

Modélisation in vitro de variants génétiques dans des globules rouges dérivés de cellules souches hématopoïétiques avec CRISPR-Cas9

Boccacci, Yelena 11 July 2023 (has links)
Titre de l'écran-titre (visionné le 29 juin 2023) / Les techniques d'édition du génome telles que CRISPR-Cas9, permettant l'introduction ciblée de modifications génétiques, offrent de nombreuses possibilités de développement d'outils de recherche ainsi que d'applications thérapeutiques. Dans le cadre de mes travaux effectués en co-direction à Héma-Québec, je me suis intéressée au potentiel de CRISPR-Cas9 en lien avec le système hématopoïétique et plus particulièrement en lien avec les globules rouges. Premièrement, j'ai exploré dans le chapitre 1 la modification spécifique de groupe sanguins qui est d'intérêt pour augmenter les possibilités transfusionnelles. Des globules rouges (GRs) de groupe sanguin rare Rhnull ont été créés en supprimant le gène RHAG des cellules souches hématopoïétiques (CSH) avec CRISPR-Cas9, suivi d'une différentiation érythrocytaire in vitro. Ce groupe sanguin pourrait théoriquement être utilisé pour transfuser des individus ayant n'importe quel variant Rh, en plus d'être utile en tant que réactif de sérologie. Le gène ABO a aussi été supprimé des CSH de groupe A, pour produire des GRs de groupe O. L'absence d'expression résiduelle des antigènes de type A obtenue à partir des CSH hétérozygotes A/O pourrait permettre de futures applications transfusionnelles comme des cas de donneur/receveur compatibles pour des phénotypes rares mais incompatibles pour le système ABO. Ensuite, un aspect prometteur du système CRISPR-Cas9 étant la correction thérapeutique de maladies génétiques, les greffes autologues de CSH génétiquement modifiées par cette technologie font l'objet de plus en plus d'études cliniques. Dans ce contexte, j'ai travaillé sur la modélisation in vitro de variants génétiques avec comme preuve de concept l'anémie falciforme puisque cela pourrait contribuer à l'étude des répercussions potentielles de l'édition du génome sur les CSH et les GRs, et complémenter les études cliniques. Une récapitulation complète de l'érythropoïèse in vitro jusqu'à la production de GRs matures a été considérée pertinente pour une caractérisation plus fidèle à la réalité de phénotypes érythrocytaires, pour étudier l'impact de divers variants sur les GRs, en plus d'être avantageuse dans l'optique de futures transfusions. La production de GRs in vitro est un objectif important en médecine transfusionnelle depuis plusieurs années et il est possible de reproduire l'érythropoïèse in vitro à partir de plusieurs sources cellulaires, dont les CSH. Cependant, les protocoles publiés à ce jour mettent peu l'accent sur l'étape de maturation finale des réticulocytes en GRs matures, analogues à ceux retrouvés en circulation, ou requièrent l'utilisation de cellules accessoires ou nourricières. Or, l'utilisation de cellules accessoires ou nourricières pourrait restreindre de potentielles applications pertinentes du modèle comme les transfusions et l'édition génétique ex vivo. Dans un premier temps, j'ai développé dans le chapitre 2 un protocole de culture cellulaire permettant une maturation accrue des réticulocytes en GRs in vitro ainsi qu'une maximisation de leur survie en culture durant cette étape, dans un milieu ne contenant aucun composé animal, cellules accessoires ou cellules nourricières. Les GRs obtenus ont un phénotype similaire à celui des GRs produits par le corps humain et ils peuvent être conservés en solution nutritive pendant 42 jours comme pour les GRs récoltés de dons de sang. Dans un second temps, j'ai optimisé dans le chapitre 3 un protocole d'édition avec CRISPR-Cas9 compatible avec la clinique, sans vecteur viral et sans sélection, dans le but d'être combiné à la production de GRs. L'introduction à une fréquence élevée de la mutation causant l'anémie falciforme, notamment de manière bi-allélique, dans des CSH suivie de la différenciation complète en GRs a permis de générer des GRs adoptant la forme caractéristique en faucille après exposition à des niveaux d'oxygène physiologiques, récapitulant ainsi l'anémie falciforme in vitro. De plus, un sous-produit d'édition produisant un variant de globine beta qui semble exprimé à des niveaux significatifs dans les GRs est présent à la suite du ciblage de la mutation dans le gène de la globine beta. La présence de ce variant mérite attention dans l'optique du développement thérapeutique pour l'anémie falciforme. En conclusion, les procédures optimisées de culture de GRs et de modifications génétiques avec CRISPR-Cas9 présentées dans cette thèse peuvent être combinées de différentes façons afin de fournir une plateforme d'étude de variants érythrocytaires in vitro, en plus de contribuer aux efforts vers la transfusion de GRs produits in vitro et d'accompagner les thérapies d'édition génétique arrivant en clinique. / Genome editing techniques, such as CRISPR-Cas9, allowing the introduction of targeted genetic modifications, offer numerous research tool possibilities and potential cellular therapies. As part of my work done in co-direction at Héma-Québec, I became interested in the potential of CRISPR-Cas9 in relation to the hematopoietic system and more particularly in relation to red blood cells. First, I explored in chapter 1 specific blood type modifications that are of interest in increasing transfusion opportunities. Rhnull cultured red blood cells (cRBCs) were produced by deleting RHAG gene in hematopoietic stem and progenitor cells (HSPCs) with CRISPR-Cas9, followed by in vitro erythroid differentiation. These red blood cells (RBCs) could theoretically be used to transfuse all Rh types, in addition to their relevance as RBC reagents for serology laboratories. ABO gene was also deleted in type A HSPCs to produce type O RBCs. The absence of residual A antigen expression when starting with heterozygotes A/O donors could allow future transfusion applications like cases of individuals compatible for rare phenotypes but frustratingly not for ABO. Then, a promising aspect of the CRISPR-Cas9 system being the therapeutic correction of genetic diseases, autologous hematopoietic stem cell (HSC) transplants genetically modified by this technology are the subject of more and more clinical studies. In this context, I worked on the in vitro modeling of genetic variants with sickle cell anemia (SCA) as proof of concept since it could contribute to the efforts aiming at studying and understanding potential side effects of genome editing on HSCs and RBCs, and complement clinical studies. The complete recapitulation of erythropoiesis in vitro, including terminal RBC maturation, was considered essential for the faithful characterization of erythroid phenotypes, for studying the impact of genetic variants on RBCs, in addition to being beneficial for future transfusion purposes. Production of cRBCs has been a major objective in the field of transfusion medicine for several years and erythropoiesis can be reproduced in vitro starting with several cell sources, one of which being HSPCs. However, current protocols do not focus on the process of reticulocyte maturation into RBCs, analogous to those found in the circulation, or they require accessory or feeder cells. Of note, accessory or feeder cells could restrict potentially relevant applications of the model like transfusions or ex vivo genome editing. First, I developed in chapter 2 a cell culture protocol allowing an increased maturation of reticulocytes into RBCs in vitro as well as a maximization of their survival in culture, using an animal component-free, accessory-free, and feeder-free medium. The resulting cRBCs had a similar phenotype as native RBCs and they could be stored for 42 days like RBCs collected from blood donations. Second, I optimized a virus-free and selection-free CRISPR-Cas9 strategy compatible with the clinic to use it in combination with cRBCs production. High efficiency introduction of the SCA-causing mutation, notably bi-allelic introduction, followed by mature cRBCs production yielded cells acquiring the characteristic sickled shape after exposition to physiological oxygen levels, thereby recapitulating SCA in vitro. Furthermore, an editing by-product giving rise to a beta globin variant seemingly expressed at significant levels in RBCs was present following the targeting of the mutation in the beta globin gene. The presence of this beta globin variant thus deserves further attention in the context of therapeutic development for SCA. To conclude, optimized procedures of RBCs' culture and CRISPR-Cas9-mediated genome editing presented in this thesis can be combined in several ways to provide a platform for the study of erythroid variants in vitro, in addition to contributing to the efforts towards future cRBCs transfusion and accompanying the coming gene editing therapies.
9

Découverte de nouveaux marqueurs pharmacogénomiques de la maladie du greffon contre l'hôte en transplantation de cellules souches hématopoïétiques

Laverdière, Isabelle 24 April 2018 (has links)
La transplantation de cellules souches hématopoïétiques (CSH) constitue une avenue thérapeutique potentiellement curative pour plusieurs cancers hématologiques comme la leucémie. L’utilisation d’une thérapie immunosuppressive pour prévenir la maladie du greffon contre l’hôte (GvHD) est un déterminant majeur du succès de la greffe. Malgré tout, cette complication survient chez 25 à 50% des transplantés et est une cause majeure de mortalité. L’optimisation du régime d'immunosuppression est un facteur facilement modifiable qui pourrait améliorer le pronostic des patients. Particulièrement, les polymorphismes du génome du donneur ou du receveur dans les voies pharmacogénomiques des immunosuppresseurs pourraient influencer l’exposition et l’action de ces médicaments, de même que le pronostic du patient. Le profilage de 20 pharmacogènes prioritaires chez des paires de donneurs-receveurs en greffe de CSH a permis d’identifier des variations génétiques liées au risque de la GvHD aiguë. Principalement, le statut génétique du receveur pour les protéines ABCC1 et ABCC2, impliquées dans le transport du méthotrexate (MTX), ainsi que des cibles moléculaires de ce médicament (ATIC et MTHFR) ont été associées au risque de GvHD aiguë. Similairement, le NFATc1, codant pour une cible moléculaire de la cyclosporine, augmentait lui aussi le risque de la maladie. Les porteurs de deux génotypes à risque et plus étaient particulièrement prédisposés à développer cette complication. Par surcroît, le statut génétique du donneur influençait également le pronostic du receveur après la greffe. Entre autres, des allèles protecteurs ont été identifiés dans les voies liées au transport (SLC19A1) et à l’action du MTX (DHFR). Inversement, NFATc2 a été associé à une augmentation du risque de GvHD aiguë. Afin de mieux comprendre les associations observées entre ces marqueurs génétiques et le risque de GvHD aiguë, une étude prospective innovante est en cours chez des greffés de CSH. Cette étude permettra d’étudier comment la génétique du patient ou du donneur peut influencer la pharmacocinétique et la pharmacodynamie des immunosuppresseurs, de même que leurs liens avec la GvHD aiguë. Ces paramètres sont quantifiés grâce à des approches analytiques que nous avons mises au point afin de répondre aux besoins spécifiques et uniques de cette étude. Les approches proposées dans cette thèse sont complémentaires aux méthodes classiques de suivi des immunosuppresseurs et pourraient aider à optimiser la pharmacothérapie du patient. Une meilleure identification des patients à haut risque de GvHD aiguë avant la greffe, basée sur des marqueurs pharmacogénomiques identitaires, pourrait guider le choix de la prophylaxie immunosuppressive, et ainsi améliorer l’issue clinique de la greffe. / Hematopoietic stem cells transplantation (HSCT) is a potentially curative therapy for several hematological cancers such as leukemia. Following transplantation, effective immunosuppression prophylaxis is mandatory to prevent the graft-versus-host disease (GvHD) and improved the clinical outcome. However, GvHD still occurs in 25-50% of transplanted patient and is associated with high mortality rate. Optimization of immunosuppressive therapy is an easily modifiable factor that can improve the prognosis of patient after HSCT. In particular, polymorphisms of recipient and donor in genes with functions related to drugs transport, metabolism and action might influence the exposure and the efficacy of immunosuppressive therapy, and thus the clinical outcome. The evaluation of 20 candidate pharmacogenes in donor-recipient pairs of HSCT identified genetic polymorphisms associated with the risk of GvHD. Recipient genetic status for ABCC1 and ABCC2, related to methotrexate (MTX) transport, as well as polymorphisms in genes encoding molecular targets (ATIC and MTHFR) of this drug, exhibit a remarkable influence on acute GvHD prevalence. Similarly, the cyclosporin molecular target NFATc1 also increases the risk of GvHD. Importantly, the presence of ≥2 of these SNPs was found to be associated with high risk of developing severe grade of acute GvHD. In donor, we identified protective alleles in pathways related to transport (SLC19A1) and action (DHFR) of MTX. Conversely, NFATc2 enhances the risk of acute GvHD. To improve our understanding of the process behind these associations, we have an ongoing prospective study in HSCT. This innovative study will provide the opportunity to evaluate the influence of such genetic markers on the pharmacokinetic and pharmacodynamic of immunosuppressive drugs, as well as their relation with the risk of GvHD. For the specific needs of our study, we have developed two analytical methods based on mass spectrometry. The approaches we proposed in this thesis are complementary to conventional monitoring method and are promising tools to optimize drug therapy in HSCT. Identification of such biomarkers assessed before transplantation can help personalized patient care in order to prevent GvHD and improve survival.
10

Optimisation du potentiel thérapeutique des cellules souches de sang de cordon ombilical

Rhéaume, Marie-Ève 24 April 2018 (has links)
Les cellules souches hématopoïétiques (CSH) sont greffées à des patients dont le système immunitaire est affaibli ou déficient, afin de reconstituer leur système hématopoïétique. En raison de leurs nombreux avantages, les CSH provenant du sang de cordon ombilical sont de plus en plus utilisées. Cette hausse de la demande a mené à l’implantation de plusieurs banques publiques, dont celle d’Héma-Québec, opérant selon les lignes directrices d’organismes réglementaires. Malgré la standardisation des protocoles de mise en banque, certains paramètres ne sont pas règlementés, telle la température d’entreposage des sangs de cordon avant leur cryopréservation. À Héma-Québec, le transport et la conservation des prélèvements avant la mise en banque sont faits à température pièce (TP) en respectant un délai maximal de 48 heures entre le moment du prélèvement et celui de la mise en banque. De récents travaux rapportés dans la littérature ont montré que les CSH provenant de sang de cordon conservé à TP pendant une période de 72 heures avant la mise en banque perdaient complètement leur capacité de reconstitution hématopoïétique alors que celle-ci était préservée si la conservation était faite à 4°C. Nous avons donc entrepris la présente étude afin de déterminer l’impact de l’entreposage à 4oC ou TP allant jusqu’à 48 heures sur plusieurs paramètres fonctionnels des CSH de sang de cordon ombilical, soit la viabilité, la capacité à se différencier et le potentiel de reconstitution hématopoïétique à l’aide d’un modèle animal de greffe. Les essais de différenciation ont permis de prédire les résultats des greffes, et ces derniers ont mis en évidence une grande variabilité entre les différents sangs de cordon. À ce stade, l’impact de la température d’entreposage avant la mise en banque sur le potentiel de reconstitution hématopoïétique des CSH n’est pas encore déterminé et des travaux supplémentaires devront être effectués. / Umbilical cord blood (UCB) has been proven to be an important alternative source of hematopoietic stem cells (HSCs) mostly for pediatric patients suffering from hematologic disorders. Because of its many advantages over other sources of HSCs, such as ease of collection, less stringent HLA restrictions and lower risks of developing GVHD, the use of UCB has expanded in recent years and led to a growing number of public cord blood banks (CBB) that operate under guidelines established by the regulatory organisms such as Netcord FACT, AABB or FDA. Despite the standardization of CBB procedures, some parameters remain unregulated, such as the pre-processing storage temperature. At Héma-Québec Public CBB, the units are kept at room temperature (RT) before being processed and cryopreserved within 48 hours after collection. Recently, a study using a mouse model of engraftment revealed that a pre-processing storage of 72 hours at room temperature might have deleterious effects on the HSC reconstitution capacity. The aim of our study was to evaluate the impact of pre-processing storage temperature on HSCs, by evaluating their viability, differentiation capacity and in vivo hematopoietic reconstitution in a mouse engraftment model. Results show that hematopoietic reconstitution potential measured in NSG mice differed for each of CBUs tested and that, in contrast to the previously published study, the in vivo reconstitution could be predicted by CFU assays. At this stage, the impact of preprocessing temperature on HSCs has not been confirmed, and to do so will require additional experiments.

Page generated in 0.0699 seconds