Spelling suggestions: "subject:"cellules cacon2"" "subject:"cellules cacoal""
1 |
Étude in vitro de la sensibilité de l'[alpha]-casozépine, décapeptide à activité benzodiazépine mimétique, à diverses protéases et peptidases du tractus gastro-intestinal. Étude comportementale chez le rat Wistar de l'activité anxiolytique des fragments F97 et F95 libérés par la pepsineBalandras, Frédérique Laurent, François Gaillard, Jean-Luc January 2008 (has links) (PDF)
Thèse de doctorat : Sciences Agronomiques : INPL : 2008. / Titre provenant de l'écran-titre.
|
2 |
Modulation du développement du cancer de l'intestin et du côlon par des nutriments des produits laitiersRoy, Marie-Josée January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Modulation de l'expression génique et de la synthèse protéique de l'apolipoprotéine A-IV par les acides grasStan, Simona 08 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal. / Au niveau plasmatique, les différentes classes de lipides sont transportées par des complexes macromoléculaires communément appelés lipoprotéines. Ces dernières sont caractérisées par la présence d'une ou plusieurs protéines (ou apolipoprotéines) qui leur confèrent des propriétés déterminant leur structure, ainsi que leur métabolisme intravasculaire. Parmi ces apolipoprotéines, l'apo A-IV se distingue par son rôle et ses multiples fonctions.
L'apo A-IV humaine est une glycoprotéine de 46-kd synthétisée exclusivement par l'intestin. Dans le plasma, cette apolipoprotéine est retrouvée sous forme libre ou associée aux lipoprotéines riches en triglycérides (les chylomicrons et les VLDL) et aux lipoprotéines de haute densité (HDL). Elle est étroitement impliquée dans le métabolisme des lipoprotéines en modulant les activités de la lipoprotéine lipase (LPL) et de la lécithine :cholestérol acyltransférase (LCAT), le flux du cholestérol périphérique, le transport inverse du cholestérol et le métabolisme intravasculaire des HDL. Grâce à ces mécanismes, l'apo A-IV réduit considérablement le risque de développer l'athérosclérose. Au niveau du système nerveux central, l'apo A-IV agirait en tant que signal de satiété et serait donc en mesure de réduire l'apport alimentaire. Par ailleurs, l'augmentation des taux de synthèse et de sécrétion de l'apo A-IV suit étroitement un repas riche en matières grasses, ce qui établit, de manière évidente, une relation entre le métabolisme lipidique et l'appétit. Dans le même ordre d'idées, de très récentes découvertes confèrent à l'apo A-IV un rôle de neurotransmetteur et de neuromodulateur capable d'inhiber la sécrétion de l'acide et de la vidange gastriques. En outre, l'apo A-IV peut être régulée par de nombreux facteurs tels que: diverses hormones (hormones thyroïdiennes, insuline, glucocorticoïdes, oestrogènes) stade du développement, plusieurs nutriments (matières grasses, protéines, glucides et nucléotides), ainsi que les fibrates. Le dernier type d'influence est de nature biliaire. Cependant, les composantes biliaires responsables n'ont pas encore été identifiées. Étant donné les nombreuses fonctions importantes de l'apo A-IV, on doit accorder une attention particulière à l'élucidation des mécanismes contrôlant la synthèse et la sécrétion de cette apolipoprotéine. Même si le processus d'absorption des matières grasses module l'apo A-IV intestinale, l'influence des différentes classes d'acides gras sur l'expression génique et la synthèse protéique demeure jusqu'à ce jour inconnue. Par conséquent, l'objectif de ce projet est d'évaluer les effets modulatoires des acides gras oléique (n-9), linoléique (n-6), linolénique (n-3) et docosahexaéndique (n-3) sur l'expression génique, la synthèse protéique et la concentration de l'apo A-IV, et ce, lors de deux périodes d'incubation, l'une de courte durée (30 minutes) et la deuxième, de longue durée (20 heures). Le modèle intestinal utilisé est représenté par les cellules Caco-2, puisque cette lignée cellulaire détient un nombre considérable de caractéristiques morphologiques et biochimiques des entérocytes et récapitule même une partie de leurs fonctions telles que l'absorption et le transport. De plus, dans notre laboratoire ce type de cellules s'est avéré à plusieurs reprises, un modèle approprié lorsqu'on a procédé à l'investigation de la sécrétion des apolipoprotéines. La détermination des niveaux d'ARNm est effectuée par « RT-PCR », combinée à l'électrophorèse sur gel de polyacrylamide (5%) et à la quantification par Phosphorlmager. La synthèse de l'apo A-IV est mesurée par l'incorporation d'un précurseur radioactif (35[S]-méthionine) et sa concentration par chimiluminescence. Nos résultats révèlent qu'à 30 minutes, la synthèse de novo est abaissée, ce qui se traduit par une diminution des niveaux d'apo A-IV. Par contre, à plus long terme (20 heures), ces deux paramètres sont augmentés en présence d'acides gras. En outre, nos observations mettent en évidence l'augmentation des niveaux d'ARNm d'apo A-IV qui sont certainement responsables de sa biogénèse. Nos données démontrent donc que les acides gras sont en mesure de moduler l'apo A-IV au niveau transcriptionnel. De plus, les acides oléique et docosahéxaénoique semblent avoir un effet plus prononcé que les deux autres acides gras. Cependant, le degré d'insaturation et la longueur de la chaîne carbonée ne semblent exercer aucune influence. En concluant, les présentes données apportent un éclairage nouveau sur le rôle des acides gras monoinsaturés et polyinsaturés. Ces derniers induisent la synthèse de l'apo A-IV, un facteur préventif de l'athérosclérose et limitant la prise excessive d'aliments.
|
4 |
Biodisponibilité nutritionnelle de systèmes colloïdaux riches en acides gras polyinsaturés : études in vivo et in vitro / Nutritional bioavailability of polyunsaturated fatty acid-rich colloidal systems : in vivo and in vitro studiesCouedelo, Leslie 14 November 2011 (has links)
Les derniers apports nutritionnels conseillés recommandent une consommation plus importante en acides gras polyinsaturés de la série n-3 que celle actuellement constatée dans l’alimentation française. Dans ce contexte, il convenait d’appréhender les facteurs susceptibles de moduler l’absorption et le devenir de leur chef de file, l’ALA, en faisant appel à deux approches, l’une in vivo (rat), l’autre in vitro (Caco-2). L’étude relative au devenir métabolique de l’ALA, selon sa forme physique et chimique de présentation, a été réalisée avec des lipides « modèles » (TAG structurés) ou naturels (huile de lin) riches en ALA, et selon différents systèmes lipidiques (huile en phase continue ou en émulsion de type huile dans eau et de composition en phospholipides variables). Les résultats obtenus in vivo et in vitro à l’égard de l’huile de lin (émulsionnée ou non) montrent que l’émulsification accélère non seulement le passage intestinal de l’ALA mais améliore également sa concentration lymphatique. L’étude cellulaire a par ailleurs démontré que la présence de lysophospholipides dans les micelles mixtes permet d’améliorer la sécrétion de l’ALA dans les lipoprotéines. D’autre part, le devenir métabolique de l’ALA dépend de sa régiolocalisation sur le triglycéride alimentaire. En effet, les résultats de l’étude faisant appel aux TAG structurés montrent que la position interne n’est que partiellement conservée dans la lymphe, suggérant qu’une hydrolyse des 2-MAG serait opérée par une MG lipase. En conséquence, l’ensemble des résultats obtenus lors de cette étude montre que l’absorption et le transport de l’ALA seraient uniquement modulés selon la forme physique de l’acide gras alors que son devenir et son utilisation métabolique dépendraient de sa régiolocalisation sur le TAG alimentaire. Ces deux facteurs réunis permettraient dés lors de prévenir l’ALA d’une β-oxydation précoce, en vue de favoriser son élongation en dérivés supérieurs dans les tissus cibles. / The last recommended nutrient intakes advise a higher consumption of n-3 polyunsaturated fatty acids series than currently found in French diet. In this context, it was appropriate to apprehend the factors that could modulate the absorption and fate of their leader, ALA, using two approaches, one in vivo (rat), the other one in vitro (Caco-2). The study on the metabolic fate of ALA, according to its physical and chemical submission form, was conducted with "models" lipids (structured TAG) or natural (flaxseed oil) rich in ALA, and according to different lipid systems (oil in continuous phase or in emulsion type oil in water and with variable phospholipid composition). Results obtained in vivo and in vitro for flaxseed oil (emulsion or not) show that emulsification enhances the recovery of ALA at the intestinal level but also improves its lymphatic concentration. The cell study also demonstrated that the presence of lysophospholipids in mixed micelles can improve the secretion of ALA in lipoproteins. On the other hand, the metabolic fate of ALA depends on its location on the glycerol backbone of the dietary triglyceride. The results of the study using structured TAG show that the internal position is partially preserved in lymph, suggesting that a hydrolysis of 2 - MAG by MG lipase could occur. Accordingly, all of the results obtained in this study shows that the absorption and transport of ALA would only be modulated according to the physical form of the fatty acid while its fate and its metabolic use would depend on its location on the dietary TAG. These two factors combined would then allow preventing the early β-oxidation of ALA in order to promote its elongation in higher derivatives in the target tissues.
|
5 |
Interactions alimentaires sur la bioaccessibilité et l'activité pro-vitaminique A du beta-carotène : effets de microconstituants phénoliques / Food interactions on the bioaccessibility and the pro-vitaminic A activity of beta-carotene : effects of phenolic micronutrientsPoulaert, Marie 18 December 2012 (has links)
Le β-carotène (Bc) est un caroténoïde connu pour son activité pro vitaminique A. La consommation de fruits et légumes riches en Bc est donc particulièrement encouragée, principalement dans les pays en développement. Cependant, au cours d'un repas, la biodisponibilité du Bc est influencée par la présence des macro et microconstituants des aliments. L'objectif général de ce travail a été d'étudier les interactions alimentaires pouvant survenir au cours des différentes étapes du processus d'absorption du Bc. La bioaccessibilité du Bc, évaluée à l'aide d'un modèle de digestion in vitro, a révélé que la quantité de Bc micellarisé des aliments de base (patate douce orange (PDO) et banane plantain) des pays du Sud se retrouve augmentée dans certaines préparations tratitionnelles. De plus, dans une simple association de deux aliments, nos résultats ont montré que la naringine de jus d'agrumes diminuait la bioaccessibilité du Bc de la PDO car ce flavanone se micellarise et entre en compétition avec le Bc. L'effet de flavanones sur l'absorption intestinale du Bc a ensuite été étudié à l'aide d'un modèle cellulaire de type Caco-2. L'ensemble des glycosides de flavanones testés, mais principalement l'hespéridine (Hes), ont augmenté l'absorption du Bc. L'expérimentation in vivo chez la gerbille n'a quant à elle pas montré d'effet de l'Hes sur la bioefficacité du Bc de la PDO. Par contre, nos données suggèrent que l'Hes, dans le cas d'un régime carencé en caroténoïdes et vitamine A, pourrait stimuler l'activité de la β,β-carotène mono-oxygénase par un mécanisme impliquant le facteur de transcription PPARγ. / Β-carotene (Bc) is a carotenoid mainly known for its provitaminic A activity. Therefore, the consumption of fruits and vegetables rich in Bc are promoted, especially in developing countries. However, during a meal, the Bc bioavailability was modulated by other macro or micronutrients from food. The main objective of this study was to evaluate food interaction occurring during the different steps of Bc absorption. The Bc bioaccessibility, evaluated through an in vitro digestion, showed that the micellarization of Bc staple foods from South countries (orange fleshed sweet potato (OFSP) and plantain) increases in some traditional food preparations. Moreover, we observed that the Bc bioaccessibility from OFSP decreases in the presence of Citrus juice because of the naringin which competes for incorporation into mixed micelles. Effects of flavanones were then assessed on intestinal Bc uptake using Caco-2 cells. Among flavanone glycosides tested, mainly hesperidin (Hes), increased Bc uptake. In vivo experimentation with gerbil did not shown any effect of Hes on the bioefficacity of Bc from OFSP. By contrast, our data suggest that under a low Bc or vitamin A free diet, Hes might enhance BCMO1 activity through its action as agonist of PPARγ.
|
6 |
Rôle et régulation de la protéine kinase AMPK au niveau intestinal / Role and regulation of intestinal AMPK protein kinaseHarmel, Élodie 03 July 2012 (has links)
La physiopathologie du diabète de type II se caractérise par de sévères anomaliesmétaboliques telles que l’hyperglycémie et les dyslipidémies contribuant au développementdes maladies cardiovasculaires. Une altération de l’activité de l’AMPK dans les tissus tels quele muscle squelettique et le foie est associée à ces désordres métaboliques alors que sonactivation pharmacologique permet de les rétablir. Toutefois, le complexe hétérotrimériqueαβγ tissu-spécifique de l’AMPK confère une régulation et des rôles distincts qui demeurentinexplorés dans l’intestin, un organe favorisant pourtant l’augmentation de l’absorption desnutriments en situation de diabète de type II. La présente étude démontre une prépondérancedu complexe α1β2γ1 de l’AMPK dans les cellules intestinales Caco-2 dont l’un des rôles de lasous-unité α1 est de réguler l’ACC, l’enzyme de synthèse des acides gras. Contrairement àl’AMPK exprimée dans le foie, elle ne régule pas l’HMG-CoA Réductase impliquée dans lasynthèse du cholestérol. L’activation de l’AMPK mime l’effet de l’insuline en réduisantl’absorption intestinale du glucose et des lipides alors que son altération en situationd’insulino-résistance (e.g : induite par le 4-HHE dans un modèle cellulaire Caco-2 ou induitepar la diète dans le modèle animal Psammomys obesus) favorise l’absorption du glucose etdes lipides, ce qui exacerberait l’hyperglycémie et la dyslipidémie postprandiale associées audiabète de type II. L’AMPK au niveau intestinal constitue donc une cible thérapeutiquepotentielle complémentaire pour la prévention et le traitement du diabète de type II. / Physiopathology of type II Diabetes is characterized by severe metabolic abnormalities suchas hyperglycemia and dyslipidemia also implicated in development of cardiovasculardiseases. Impaired AMPK activity in tissues such as skeletal muscle and liver is associatedwith these metabolic disorders whereas its pharmacologic activation is able to restore suchabnormalities. Nevertheless, tissue-specific heterotrimeric αβγ AMPK likely confers distinctroles and regulation that remain unexplored in intestine, an organ promoting enhancednutrients absorption in type II diabetes situation. This study demonstrates α1β2γ1 AMPKcomplex preponderance in intestinal Caco-2 cells whose α1 subunit role is to regulate ACCenzyme responsible of fatty acid synthesis. Unlike in the liver, AMPK doesn’t regulate HMGCoAreductase enzyme implicated in cholesterol synthesis. AMPK activation mimics insulineffect by reducing intestinal glucose and lipids absorption whereas its alteration in insulinresistancesituation (e.g.: induced by 4-HHE in Caco-2 cell model or in Psammomys obesusanimal model) enhances glucose and lipids absorption which could exacerbate postprandialhyperglycemia and dyslipidemia associated to type II diabetes. Thus, AMPK at the intestinallevel could be a potential therapeutic target in prevention and treatment of type II diabetes
|
7 |
Rôle et régulation de la protéine kinase AMPK au niveau intestinalHarmel, Élodie 03 July 2012 (has links) (PDF)
La physiopathologie du diabète de type II se caractérise par de sévères anomaliesmétaboliques telles que l'hyperglycémie et les dyslipidémies contribuant au développementdes maladies cardiovasculaires. Une altération de l'activité de l'AMPK dans les tissus tels quele muscle squelettique et le foie est associée à ces désordres métaboliques alors que sonactivation pharmacologique permet de les rétablir. Toutefois, le complexe hétérotrimériqueαβγ tissu-spécifique de l'AMPK confère une régulation et des rôles distincts qui demeurentinexplorés dans l'intestin, un organe favorisant pourtant l'augmentation de l'absorption desnutriments en situation de diabète de type II. La présente étude démontre une prépondérancedu complexe α1β2γ1 de l'AMPK dans les cellules intestinales Caco-2 dont l'un des rôles de lasous-unité α1 est de réguler l'ACC, l'enzyme de synthèse des acides gras. Contrairement àl'AMPK exprimée dans le foie, elle ne régule pas l'HMG-CoA Réductase impliquée dans lasynthèse du cholestérol. L'activation de l'AMPK mime l'effet de l'insuline en réduisantl'absorption intestinale du glucose et des lipides alors que son altération en situationd'insulino-résistance (e.g : induite par le 4-HHE dans un modèle cellulaire Caco-2 ou induitepar la diète dans le modèle animal Psammomys obesus) favorise l'absorption du glucose etdes lipides, ce qui exacerberait l'hyperglycémie et la dyslipidémie postprandiale associées audiabète de type II. L'AMPK au niveau intestinal constitue donc une cible thérapeutiquepotentielle complémentaire pour la prévention et le traitement du diabète de type II.
|
8 |
Rôle et régulation de la protéine kinase AMPK au niveau intestinalHarmel, Elodie 05 1900 (has links)
réalisé en cotutelle avec l'Université Claude Bernard Lyon 1 / La physiopathologie du diabète de type II se caractérise par de sévères anomalies métaboliques telles que l’hyperglycémie et les dyslipidémies contribuant au développement des maladies cardiovasculaires. Une altération de l’activité de l’AMPK dans les tissus tels que le muscle squelettique et le foie est associée à ces désordres métaboliques alors que son activation pharmacologique permet de les rétablir. Toutefois, le complexe hétérotrimérique αβγ tissu-spécifique de l’AMPK confère une régulation et des rôles distincts qui demeurent inexplorés dans l’intestin, un organe favorisant pourtant l’augmentation de l’absorption des nutriments en situation de diabète de type II. La présente étude démontre une prépondérance du complexe α1β2γ1 de l’AMPK dans les cellules intestinales Caco-2 dont l’un des rôles de la sous-unité α1 est de réguler l’ACC, l’enzyme de synthèse des acides gras. Contrairement à l’AMPK exprimée dans le foie, elle ne régule pas l’HMG-CoA Réductase impliquée dans la synthèse du cholestérol. L’activation de l’AMPK mime l’effet de l’insuline en réduisant l’absorption intestinale du glucose et des lipides alors que son altération en situation d’insulino-résistance (e.g : induite par le 4-HHE dans un modèle cellulaire Caco-2 ou induite par la diète dans le modèle animal Psammomys obesus) favorise l’absorption du glucose et des lipides, ce qui exacerberait l’hyperglycémie et la dyslipidémie postprandiale associées au diabète de type II. L’AMPK au niveau intestinal constitue donc une cible thérapeutique potentielle complémentaire pour la prévention et le traitement du diabète de type II. / Physiopathology of type II Diabetes is characterized by severe metabolic abnormalities such as hyperglycemia and dyslipidemia also implicated in development of cardiovascular diseases. Impaired AMPK activity in tissues such as skeletal muscle and liver is associated with these metabolic disorders whereas its pharmacologic activation is able to restore such abnormalities. Nevertheless, tissue-specific heterotrimeric αβγ AMPK likely confers distinct roles and regulation that remain unexplored in intestine, an organ promoting enhanced nutrients absorption in type II diabetes situation. This study demonstrates α1β2γ1 AMPK complex preponderance in intestinal Caco-2 cells whose α1 subunit role is to regulate ACC enzyme responsible of fatty acid synthesis. Unlike in the liver, AMPK doesn’t regulate HMG-CoA reductase enzyme implicated in cholesterol synthesis. AMPK activation mimics insulin effect by reducing intestinal glucose and lipids absorption whereas its alteration in insulin-resistance situation (e.g.: induced by 4-HHE in Caco-2 cell model or in Psammomys obesus animal model) enhances glucose and lipids absorption which could exacerbate postprandial hyperglycemia and dyslipidemia associated to type II diabetes. Thus, AMPK at the intestinal level could be a potential therapeutic target in prevention and treatment of type II diabetes.
|
9 |
Rôle et régulation de la protéine kinase AMPK au niveau intestinalHarmel, Elodie 05 1900 (has links)
La physiopathologie du diabète de type II se caractérise par de sévères anomalies métaboliques telles que l’hyperglycémie et les dyslipidémies contribuant au développement des maladies cardiovasculaires. Une altération de l’activité de l’AMPK dans les tissus tels que le muscle squelettique et le foie est associée à ces désordres métaboliques alors que son activation pharmacologique permet de les rétablir. Toutefois, le complexe hétérotrimérique αβγ tissu-spécifique de l’AMPK confère une régulation et des rôles distincts qui demeurent inexplorés dans l’intestin, un organe favorisant pourtant l’augmentation de l’absorption des nutriments en situation de diabète de type II. La présente étude démontre une prépondérance du complexe α1β2γ1 de l’AMPK dans les cellules intestinales Caco-2 dont l’un des rôles de la sous-unité α1 est de réguler l’ACC, l’enzyme de synthèse des acides gras. Contrairement à l’AMPK exprimée dans le foie, elle ne régule pas l’HMG-CoA Réductase impliquée dans la synthèse du cholestérol. L’activation de l’AMPK mime l’effet de l’insuline en réduisant l’absorption intestinale du glucose et des lipides alors que son altération en situation d’insulino-résistance (e.g : induite par le 4-HHE dans un modèle cellulaire Caco-2 ou induite par la diète dans le modèle animal Psammomys obesus) favorise l’absorption du glucose et des lipides, ce qui exacerberait l’hyperglycémie et la dyslipidémie postprandiale associées au diabète de type II. L’AMPK au niveau intestinal constitue donc une cible thérapeutique potentielle complémentaire pour la prévention et le traitement du diabète de type II. / Physiopathology of type II Diabetes is characterized by severe metabolic abnormalities such as hyperglycemia and dyslipidemia also implicated in development of cardiovascular diseases. Impaired AMPK activity in tissues such as skeletal muscle and liver is associated with these metabolic disorders whereas its pharmacologic activation is able to restore such abnormalities. Nevertheless, tissue-specific heterotrimeric αβγ AMPK likely confers distinct roles and regulation that remain unexplored in intestine, an organ promoting enhanced nutrients absorption in type II diabetes situation. This study demonstrates α1β2γ1 AMPK complex preponderance in intestinal Caco-2 cells whose α1 subunit role is to regulate ACC enzyme responsible of fatty acid synthesis. Unlike in the liver, AMPK doesn’t regulate HMG-CoA reductase enzyme implicated in cholesterol synthesis. AMPK activation mimics insulin effect by reducing intestinal glucose and lipids absorption whereas its alteration in insulin-resistance situation (e.g.: induced by 4-HHE in Caco-2 cell model or in Psammomys obesus animal model) enhances glucose and lipids absorption which could exacerbate postprandial hyperglycemia and dyslipidemia associated to type II diabetes. Thus, AMPK at the intestinal level could be a potential therapeutic target in prevention and treatment of type II diabetes. / réalisé en cotutelle avec l'Université Claude Bernard Lyon 1
|
Page generated in 0.0465 seconds