Spelling suggestions: "subject:"cellules solaire multijonction"" "subject:"cellules solaire multijunction""
1 |
Revêtements antireflet-passivation à base de nitrure de silicium PECVD pour cellules solaires triple-jonction III-V /GEHomier, Ram January 2012 (has links)
Dans le contexte environnemental actuel, le photovoltaïque bénéficie de l'augmentation des efforts de recherche dans le domaine des énergies renouvelables. Pour réduire le coût de la production d'électricité par conversion directe de l'énergie lumineuse en électricité, le photovoltaïque concentré est intéressant. Le principe est de concentrer une grande quantité d'énergie lumineuse sur des petites surfaces de cellules solaires multi-jonction à haute efficacité. Lors de la fabrication d'une cellule solaire, il est essentiel d'inclure une méthode pour réduire la réflexion de la lumière à la surface du dispositif. Le design d'un revêtement antireflet (ARC) pour cellules solaires multi-jonction présente des défis à cause de la large bande d'absorption et du besoin d'égaliser le courant produit par chaque sous-cellule. Le nitrure de silicium déposé par PECVD en utilisant des conditions standards est largement utilisé dans l'industrie des cellules solaires à base de silicium. Cependant, ce diélectrique présente de l'absorption dans la plage des courtes longueurs d'onde. Nous proposons l'utilisation du nitrure de silicium déposé par PECVD basse fréquence (LFSiN) optimisé pour avoir un haut indice de réfraction et une faible absorption optique pour l'ARC pour cellules solaires triple-jonction III-V/Ge. Ce matériau peut aussi servir de couche de passivation/encapsulation. Les simulations montrent que l'ARC double couche SiO[indice inférieur 2]/LFSiN peut être très efficace pour réduire les pertes par réflexion dans la plage de longueurs d'onde de la sous-cellule limitante autant pour des cellules solaires triple-jonction limitées par la sous-cellule du haut que pour celles limitées par la sous-cellule du milieu. Nous démontrons aussi que la performance de la structure est robuste par rapport aux fluctuations des paramètres des couches PECVD (épaisseurs, indice de réfraction).
|
2 |
Etude et réalisation de jonctions tunnel à base d'hétérostructures à semi-conducteurs III-V pour les cellules solaires multi-jonction à très haut rendement / Development of tunnel junctions based on III6V semiconductors heterostructures for hgh efficiency multi-junction solar cellsLouarn, Kévin 23 January 2018 (has links)
L'architecture des cellules solaires multi-jonction permet d'obtenir des records de rendement de conversion photovoltaïque, pouvant aller jusqu'à 46%. Leurs sous-cellules sont chacune conçues pour absorber une partie bien définie et complémentaire du spectre solaire, et sont connectées en série par des jonctions tunnel. La fabrication de cellules solaires tandem InGaP/GaAs d'énergies de bande interdite (" band gap ") 1,87 eV/1,42 eV accordées en maille sur substrat GaAs est bien maîtrisée, et de très hauts rendements peuvent être obtenus en ajoutant une ou deux sous-cellules de plus petit " gap " (1 eV et 0,7eV). Pour cela, les matériaux " petits gaps " fabriqués par Epitaxie par Jets Moléculaires (EJM) doivent être développés ainsi que des jonctions tunnel présentant une faible résistivité électrique, une haute transparence optique et de bonnes propriétés structurales. La croissance EJM et la modélisation de jonctions tunnel GaAs nous a permis d'identifier le mécanisme d'effet tunnel interbande plutôt que le mécanisme d'effet tunnel assisté par les défauts comme mécanisme dominant du transport dans ces structures. Nous avons exploité l'hétérostructure de type II fondée sur le système GaAsSb/InGaAs pour favoriser ce mécanisme d'effet tunnel interbande, et donc obtenir des jonctions tunnel de très faible résistivité tout en limitant la dégradation des propriétés optiques et structurales des composants inhérente à l'utilisation de matériaux " petits gaps " et désaccordés en maille GaAsSb et InGaAs. De plus, nous avons conçu une structure innovante d'hétérojonction tunnel de type II AlGaInAs/AlGaAsSb sous la forme de tampon graduel pour l'incorporation d'une sous-cellule métamorphique à 1 eV. Plusieurs candidats pour le matériau absorbeur à 1 eV à base de nitrure dilué InGaAsN(Bi) ont alors été développés et caractérisés, le contrôle de l'accord de maille étant assuré par un suivi en temps réel de la courbure de l'échantillon pendant la croissance EJM. Des premières cellules solaires III-V à base de GaAs, de nitrure dilué à 1 eV et de GaInAs métamorphique ont été fabriquées afin de valider les architectures développées de jonctions tunnel. Ce travail a permis de démontrer le potentiel de l'hétérostructure de type II GaAsSb/InGaAs pour répondre aux principaux défis de conception et de fabrication des cellules solaires multi-jonction sur substrat GaAs, que ce soit au niveau de la jonction tunnel ou au niveau de l'incorporation des sous-cellules de gap 1 eV. / Multi-Jonction Solar Cells (MJSCs) are leading the way of high efficiency photovoltaic devices, with conversion efficiency up to 46%. Their subcells are designed to absorb in a specific and complementary range of the solar spectrum, and are connected in series with tunnel junctions. The tandem architecture InGaP/GaAs - with bandgaps of 1.87 eV and 1.42 eV respectively - is mature and its efficiency could be enhanced by incorporating subcell(s) with bandgaps of 1 eV and/or 0.7 eV. The Molecular Beam Epitaxy (MBE) growth of such low bandgap materials has thus to be developed, as well as low-resistive tunnel junctions with good structural and optical properties. Based on the MBE growth and the simulation of GaAs tunnel junctions, we have identified interband tunneling as the predominant transport mechanism in such devices rather than trap-assisted-tunneling. The interband tunneling mechanism could be enhanced with the type II GaAsSb/InGaAs heterostructure. Using this material system, we have then demonstrated tunnel junctions with very low electrical resistivity with a limited degradation of the optical and structural properties inherently induced by the use of low band-gap and lattice-mismatched GaAsSb and InGaAs materials. Moreover, we fabricated an innovative AlInGaAs/AlGaAsSb tunnel junction as a graded buffer architecture that could be used for the incorporation of a 1 eV metamorphic subcell. We then developed and characterized InGaAsN(Bi) materials with band-gaps of ~1eV, taking advantage of in-situ wafer curvature measurements during the MBE growth to control the lattice-mismatch. Preliminary solar cells based on GaAs, 1 eV dilute nitride and metamorphic InGaAs have been fabricated and characterized validating the developed tunnel junction architectures. This work has enabled to demonstrate the potential of the type II GaAsSb/InGaAs heterostructure to meet the challenges posed by the conception and the fabrication of GaAs-based MJSCs, both for the tunnel junction and the 1 eV subcell.
|
Page generated in 0.092 seconds