• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling cancellous bone screw performance using finite element models

Piper, Antony T. January 2016 (has links)
Implants such as intramedullary nails or cancellous screws are used to mechanically stabilize fractures in bone. They provide reinforcement to the bone if they find good purchase in cancellous bone. Not all implants hold enough loads for mechanical stability and pull-out or cut-out may happen in some cases. This is linked to the interface between the bone and the implant. Computer modelling techniques are used to investigate both the effects of cut-out in a femur model, and the pull-out forces of cancellous bone screws. The bone geometry was based on CT scanned cancellous bone and converted using Mimics® software. The finite element models were produced in ANSYS®. Simple bone models were used to examine a fractured femur under standard gait loading. These models were continuum models and idealised the screw to bone interface in order to ease computational demand. The models were used to investigate the ideal positions of intramedullary devices lag screws on an anterior-posterior view of the implant location. In accordance with literature, an inferior-central or central-central position was the best position of the lag screw, while a superior-anterior or inferior-anterior position was adverse. The introduction of multi-scale modelling in order to investigate cut-out with a discrete bone model was not achieved. Discrete cancellous bone models were used to examine some of the cancellous screw characteristics, including pitch, inner diameter and proximal half angle, while a cancellous screw was also studied using a model of cancellous bone with a range of bone densities. The calculated reaction force for a pull-out of 0.2mm shows the influence of some parameters. Change in the proximal half angle increased the stiffness and strength by about 15% in line with the experimental findings of others, while apparent density changes of 2.5% increased the forces threefold. A significant reduction in reaction force was observed when a particular screw geometry in lower apparent density bone was modelled and rotated through 180° on a plane. Examination of the geometry of the bone/screw interface shows that in certain positions there is very little cancellous bone to support the implant. This will lead to low strength and is very difficult to predict. The same models were used to examine the effect of increasing bone stiffness adjacent to the implant and the use of a cement layer to augment the screw model. The increasing stiffness concluded that an increase in pull-out stiffness can be achieved, even in low quality bone, while the cement augmentation showed a significant increase in pull-out strength, though it was idealised as bonded to the bone and screw.
2

Cement Augmentation Enhanced Pullout Strength Of Fatigue Loaded Bone Screws

Raikar, Sajal Vijay January 2008 (has links)
No description available.
3

Design of a hip screw for injection of bone cement

Grant, Caroline Ann January 2006 (has links)
Fracture to the neck of femur is frequently stabilised with a hip screw system, however the host bone is often weak or osteoporotic. This causes premature failure of the system, commonly by cut-out of the lag screw through the head of the femur. While augmentation of the fixation with bone cement improves the holding power and decreases failure rate, current methods of administering the cement are messy and inaccurate. This project proposes a lag screw design which allows for direct injection of the cement, via the lag screw itself, after the screw has been inserted and correctly positioned in the femur. A method is also suggested to reduce the risk of cement leakage into the joint space when the guide wire has punctured the head of the femur. The design uses a system of holes in the threaded section of a cannulated screw to allow delivery of cement to the desired area; the modified screw was also tested with and without the tip of the screw closed. These design and implantation techniques were compared to the standard design lag screw both with and without bone cement augmentation by traditional methods. Initial testing in a synthetic bone analogue looked promising. The modified screw with closed end performed better in push out tests than the standard screw alone and comparably with the standard screw with cement augmentation. A second phase of testing with the synthetic material was then conducted to more closely represent physiological loading conditions. In this case again the closed ended modified screw with cement augmentation outperformed the original screw and was comparable with the augmented original screw. However, during this phase of testing problems were observed with the synthetic testing material and it was decided to conduct further testing in paired porcine cadaveric femurs. Several further problems occurred in this phase of testing, including the bending of the test screws. It was concluded that the modified screw showed potential in being a more accurate and consistent method of cement augmentation, however neither the synthetic bone analogue or the porcine material was an adequate model of an osteoporotic human femur. If a suitable testing material could be found, continued study of this prototype may prove beneficial.

Page generated in 0.1194 seconds