• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 18
  • 13
  • 4
  • 2
  • 1
  • Tagged with
  • 69
  • 69
  • 23
  • 23
  • 21
  • 18
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laboratory and field investigation of the performance of novel microcapsule-based self-healing concrete

Giannaros, Petros January 2017 (has links)
Concrete, a composite material consisting of aggregates bound together with cement paste, is the most widely used construction material. Concrete is relatively cheap, very versatile and has excellent compressive strength. However, its tensile strength is limited and for this reason steel rebars are often added to create reinforced concrete (RC). Cracking inevitably occurs in all RC materials and associated structures due to a variety of mechanical and environmental actions. The generation of tiny microcracks within concrete facilitates the flow of potentially aggressive fluids that can corrode the embedded steel rebars and, in extreme cases, lead to premature structural failure. Concrete, along with all cement-based materials, does possess some inherent self-healing capacity and is able to heal certain-size cracks autogenously. This self-healing capability is very limited and therefore researchers have attempted to improve upon it by using a variety of techniques. In particular, the use of engineered additions for autonomic self-healing has gained significant interest in the past two decades. An example is the addition of microcapsules that disperse throughout the hardened material subsequently providing reservoirs of healing agents. When cracks arise within the material, they rupture the embedded microcapsules causing a release of their contents into the crack volume. The released material then reacts to provide filling, sealing and healing of the crack. The primary aim of this research project was to investigate the autonomic self-healing performance of concrete containing microencapsulated sodium silicate. The effect of microcapsule addition on the fresh, hardened and self-healing properties of cement, mortar and concrete were all explored. Self-healing was monitored using a variety of techniques and results reveal the increased self-healing ability of microcapsule-containing cementitious materials as well as the efficacy of sodium silicate as a healing agent. Furthermore, the self-healing concrete field trial displays the great potential for microcapsules to be incorporated into large-scale self-healing concrete applications.
2

Experimental studies of ion transport in cementitious materials under partially saturated conditions / Études expérimentales du transport d'ions dans des matériaux cimentaires en conditions non saturées

Olsson, Nilla 08 June 2018 (has links)
Thèse sur les matériaux cimentaires en milieux non saturés / Thesis on unsaturated cement materials
3

Discrete element modelling of cementitious materials

Brown, Nicholas John January 2013 (has links)
This thesis presents a new bonded particle model that accurately predicts the wideranging behaviour of cementitious materials. There is an increasing use of the Discrete Element Method (DEM) to study the behaviour of cementitious materials such as concrete and rock; the chief advantage of the DEM over continuum-based techniques is that it does not predetermine where cracking and fragmentation initiate and propagate, since the system is naturally discontinuous. The DEM’s ability to produce realistic representations of cementitious materials depends largely on the implementation of an inter-particle bonded-contact model. A new bonded-contact model is proposed, based on the Timoshenko beam theory which considers axial, shear and bending behaviour of inter-particle bonds. The developed model was implemented in the commercial EDEM code, in which a thorough verification procedure was conducted. A full parametric study then considered the uni-axial loading of a concrete cylinder; the influence of the input parameters on the bulk response was used to produce a calibrated model that has been shown to be capable of producing realistic predictions of a wide range of behaviour seen in cementitious materials. The model provides useful insights into the microscopic phenomena that result in the bulk loading responses observed for cementitious materials such as concrete. The new model was used to simulate the loading of a number of deformable structural elements including beams, frames, plates and rings; the numerical results produced by the model provided a close match to theoretical solutions.
4

The Influence of the Binder Type & Aggregate Nature on the Electrical Resistivity and Compressive Strength of Conventional Concrete

Deda, Hugo 18 November 2020 (has links)
Concrete has been used in a number of civil engineering applications due to its interesting fresh, hardened, and durability-related properties. 28-day compressive strength is the most important hardened state property and is frequently used as an indicator of the material’s quality. However, early-age mechanical properties are a key factor nowadays to enhance construction planning. Several advanced techniques have been proposed to appraise concrete microstructure and quality, and among those electrical resistivity (ER) is one of the most commonly used since it is a non-destructive and low-cost technique. Although recent literature data have shown that ER may be significantly influenced by a variety of parameters such as the test setup, material porosity and moisture content, binder type/amount and presence of supplementary cementing materials (SCMs) along with the nature of the aggregates used in the mix, further research must be performed to clarify the influence of the raw materials (i.e. SCMs and aggregate nature) on ER using distinct setups. Therefore, this work aims to appraise the influence of the coarse aggregate nature and binder replacement/amount on the concrete ER and compressive strength predictions models through ER. Twenty-four concrete mixtures were developed with two different coarse aggregate natures (i.e. granite and limestone), two different water-to-binder ratios (w/b; i.e. 0.6 and 0.4) and incorporating two different SCMs (i.e. slag and fly-ash class F) with different replacement levels. Moreover, three distinct ER techniques (e.g. bulk, surface, and internal) and compressive strength tests were performed at different ages (i.e. 3, 7, 14, and 28 days). Results indicate that the binder type and replacement amount significantly affect ER and compressive strength. Otherwise, the coarse aggregate nature presented only trivial influence for 0.6 w/b mixes, except for 50% fly-ash replacement samples; whereas for concrete specimens with enhanced microstructure (i.e. 0.4 w/b), the aggregate nature influence was statically significant especially for the binary mixtures with high SCMs replacement levels (i.e. 70% GGBS and 50% fly-ash). Finally, all ER test setups were considered to be quite suitable and reliable NDT techniques correlating themselves very well. Yet the internal resistivity setup demonstrated to be the device which yields the lowest variability amongst them.
5

The sound speed and attenuation in loose and consolidated granular formulations of high alumina cements

Horoshenkov, Kirill V., Hughes, David C., Cwizen, A. January 2003 (has links)
No / Clinkers of high alumina cements are separated into three granular formulations with particle sizes in the range 0.6-0.71 mm, 0.71-1.18 mm and greater than 1.18 mm. These are used to manufacture consolidated samples of porous concrete in an autoclave. The acoustic and microscopic properties of loose and consolidated porous samples of concrete are investigated using both experimental methods and mathematical modelling. Values of porosity, flow resistivity, tortuosity and parameters of the pore size distribution are determined and used to predict closely the sound speed, acoustic attenuation and normal incidence absorption coefficient of these materials. It is shown that high alumina cements do not require additional binders for consolidation and that the structural bonds in these cements are developed quickly between individual clinkers in the presence of water. The hydration product build-up during the consolidation process is insignificant which ensures good acoustic performance of the consolidated samples resulting from a sufficient proportion of the open pores. The value of porosity in the consolidated samples was found to be around 40%, which is close to that measured in some commercial acoustic absorbers. This work provides a foundation for the development of acoustically efficient and structurally robust materials, which can be integrated in environmentally sustainable concrete and masonry structures.
6

Étude expérimentale et modélisation de l'auto-cicatrisation des matériaux cimentaires avec additions minérales / Experimental study and modelisation of self-healing cementitious materials with mineral additions

Olivier, Kelly January 2016 (has links)
Résumé : L’auto-cicatrisation des fissures des matériaux cimentaires présente un intérêt important pour améliorer leur durabilité (propriétés de transfert par exemple). L’impact du laitier de haut-fourneau sur ce phénomène a été peu étudié bien qu’il ait été observé sur des ouvrages du Génie Civil. Dans cette étude, la cinétique et l’amplitude de l’auto-cicatrisation ont été suivies par des essais non destructifs : la tomographie aux rayons X et la perméabilité à l’air, pour une fissuration créée à 7 jours et à 28 jours. Les résultats montrent que le laitier de haut-fourneau possède un potentiel d’auto-cicatrisation intéressant pouvant dépasser les résultats obtenus pour les formulations de référence sans laitier. Ce bon potentiel dépend des caractéristiques physico-chimiques des matériaux brutes et du potentiel d’hydratation de la formulation au cours du temps. De plus pour suivre l’auto-cicatrisation, un nouvel essai a été mis en place afin de fissurer les éprouvettes de mortier par retrait gêné et d’étudier l’auto-cicatrisation d’une fissure naturelle. Cet essai s’est avéré efficace sur la formulation de référence. Une caractérisation des produits de cicatrisation par MEB-EDS témoigne de la formation de nouveaux produits dans les fissures et de l’impact important des conditions de stockage sur le type de produits formés: des C-S-H pour un stockage sous eau et des carbonates de calcium pour un stockage en chambre humide (CO2 + eau). Les résultats de migration aux chlorures de nano-indentation montrent que ces produits de cicatrisation possèdent de bonnes propriétés de durabilité et des propriétés mécaniques à l’échelle microscopique intéressantes (pour le carbonate de calcium). Enfin, une modélisation du phénomène d’auto-cicatrisation est proposée au moyen du code de calcul de géochimie PHREEQC. L’étude a révélé le potentiel intéressant de PHREEQC pour modéliser l’auto-cicatrisation et en faire un outil de prédiction du phénomène. / Abstract : Self-healing of cementitious materials presents great interest to improve the durability of concrete structure (transfer properties for example). The impact of blast-furnace slag on this phenomenon is not yet clear even if the self-healing of concrete with blast-furnace slag was observed in building sites. To understand the blast-furnace slag influence, non-destructive methods were used to follow self-healing: X-ray tomography and gas permeability test. All specimens were cracked at 7 days and 28 days. The results show that the blast furnace slag has an interesting self-healing potential that can exceed the reference formulation results. This good potential depends on the physico-chemical characteristics of the raw materials and the hydration potential of the formulation over time. In addition to follow the self-healing, a new trial was set up to crack mortar specimens by restrained shrinkage and study the self-healing of a natural crack. In addition to follow the self-healing, a new trial was set up to crack mortar specimens by restrained shrinkage and study the self-healing of a natural crack. This test has proven effective over the reference formulation.The SEM with EDS analysis showed the formation of new products in the crack and the impact of storage conditions on these products : C-S-H for specimens stored in water and calcium carbonate for specimens stored in a damp chamber (CO2 + water). Migration chlorures and nano-indentation tests results showed that self-healing products had interesting durability properties and micro-mechanical properties (for calcium carbonate). Finally, self-healing modelling is proposed by means of geochemistry PHREEQC calculation code. The study revealed interesting potential PHREEQC to model self- healing phenomenon and make it a of predictive tool.
7

Characterization of multiscale porosity in cement-based materials: effects of flaw morphology on material response across size and time scales

Mayercsik, Nathan Paul 28 June 2016 (has links)
It is perhaps paradoxical that many material properties arise from the absence of material rather than the presence of it. For example, the strength, stiffness, and toughness of a concrete are related to its pore structure. Furthermore, the volume, size distribution, and interconnectivity of porosity is important for understanding permeability, diffusivity, and capillary action occurring in concrete, which are necessary for predicting service lives in aggressive environments. This research advances the state-of-the-art of multiscale characterization of cement-based materials, and uses this characterization information to model the material behavior under competing durability concerns. In the first part of this research, a novel method is proposed to characterize the entrained air void system. In the second and third parts of this research, microstructural characterization is used in tandem with mechanical models to investigate the behavior of cementitious materials when exposed to rapid rates of loading and to cyclic freezing and thawing. First, a novel analytical technique is presented which reconstructs the 3D entrained air void distribution in hardened concrete using 2D image analysis. This method proposes a new spacing factor, which is believed to be more sensitive to microstructural changes than the current spacing factor commonly utilized in practiced, and specified in ASTM C457, as a measure of concrete's ability to resist to damage under cyclic freeze/thaw loading. This has the potential to improve economy by improving the quality of petrographic assessment and reducing the need for more expensive and time-consuming freeze/thaw tests, while also promoting the durability of concrete. Second, quantitative measurements of the sizes, shapes, and spatial arrangements of flaws which are through to drive failure at strain rates above 100/s were obtained in order to model mortar subjected to high strain-rate loading (i.e., extremes in load rate). A micromechanics model was used to study the ways in which flaw geometry and flaw interaction govern damage. A key finding suggests that dynamic strength may be multimodal, with larger flaws shifting the dynamic strength upwards into the highest strength failure mode. Third, a robust theoretical approach, based upon poroelasticity, is presented to further validate the utility of the novel spacing factor proposed this research. The model is truly multiscale, using in its formulation pore size data ranging from the nanoscale to the micro-scale, entrained air data from the micro-scale to the millimeter scale, and infers a representative volume element on the centimeter scale. The results provide an underlying physical basis for the performance of the novel spacing factor. Furthermore, the framework could be used as a forensic tool, or as a tool to optimize the entrained air void system against freeze/thaw damage.
8

Increasing the reactivity of natural zeolites used as supplementary cementitious materials

Burris, Lisa Elanna 17 September 2014 (has links)
This work examined the effects of thermal and chemical treatments on zeolite reactivity and determined the zeolite properties governing the development of compressive strengths and pozzolanic reactivity. Zeolites are naturally occurring aluminosilicate minerals found abundantly around the world. Incorporation of zeolites in cement mixtures has been shown by past research to increase concrete’s compressive strength and durability. In addition, use of zeolites as SCMs can decrease the environmental impact and energy demands associated with cement production for reinforced concrete structures. Further, in contrast to man-made SCMs such as fly ash, zeolite minerals provide a reliable and readily available SCM source, not affected by the production limits and regulations of unrelated industries such as the coal power industry. In this work, six sources of naturally occurring clinoptilolite zeolite were examined. The zeolites were first characterized using x-ray fluorescence, quantitative xray diffraction, thermal analysis, particle size analysis, pore size distribution and surface area analysis, and scanning electron microscopy. Cation exchange capacity was also tested for one of the zeolites. Following comprehensive material characterization, the six pozzolanic reactivity of the natural zeolites was determined by measuring the quantity of calcium hydroxide in paste after 28 or 90 days, by measuring calcium hydroxide consumption of the zeolite in solution and by tracking the development of strengths of zeolite-cement mortars. Pretreatments that attempted to increase the reactivity of the zeolites, including calcination, acid treatment, milling and cation exchange, were then tested and evaluated using the same methods of material characterization and testing mentioned previously. Last, the results of the reactivity testing were reanalyzed to determine which properties of natural zeolites, including particle size, nitrogen-available surface area, and composition, govern the development of compressive strengths, pozzolanic reactivity and improved cement hydration parameters of pastes and mortars using natural zeolites as SCMs. Pretreatment testing showed that milling and acid treatment successfully increased the reactivity of zeolites used as SCMs. Additionally, particle size was shown to be the dominant property in determining the development of compressive strengths while particle size and surface area of the zeolites contributed to zeolite pozzolanic reactivity. / text
9

Contribuições para a ciência e engenharia de materiais cimentícios: processamento, durabilidade e resistência mecânica. / Contributions to science and engineering of cementitious materials: processing, durability and mechanical strenght

Rossetto, Hebert Luís 24 April 2007 (has links)
A engenharia de materiais proporcionou os avanços mais notórios sobre o desempenho mecânico dos materiais cimentícios nas últimas décadas, ora por meio das técnicas de conformação, ora pelo projeto da microestrutura. Com isso, demonstrou-se ser falsa a idéia de que baixas resistências mecânicas seriam inerentes aos materiais cimentícios, mas, ao mesmo tempo, o restrito advento desses novos materiais aos setores de maior demanda os relegou à condição de alternativos apenas. O fato de cada tonelada de cimento Portland gerar outra tonelada de gases do efeito estufa indica que o quadro anterior precisa ser revisto. É por isso que uma das principais contribuições desse trabalho foi desenvolver a conformação por técnicas altamente produtivas e capazes de propiciar excelente desempenho mecânico, além da durabilidade, aos materiais cimentícios. A concepção e a construção de uma linha de prensagem por rolos foi o primeiro passo para que as placas cimentícias com resistência à compressão superior à 200MPa e reprodutibilidade compatível à das cerâmicas técnicas fossem obtidas de modo eficaz. Por sua vez, a extrusão, uma técnica capaz de produzir perfis com geometrias complexas e em grande quantidade, também foi bem adaptada aos materiais cimentícios, com excelente reprodutibilidade e resistência à flexão superior à 20MPa. Em ambas, prensagem e extrusão, o domínio da técnica nos permitiu obter componentes cimentícios cujas resistências mecânicas não sofrem influências de quaisquer que sejam os ambientes ao quais são expostos. A isso atribuímos o mais amplo conceito de durabilidade para um material cuja utilização depende da resistência mecânica ao longo de sua vida útil. Ainda, um método inovador para a durabilidade desses materiais foi desenvolvido neste trabalho: trata-se de sua impregnação por TEOS, um precursor de sílica molecular que reage com o hidróxido de cálcio para selar os poros pelos quais penetrou. Em números, significa a possibilidade de reduzir a porosidade dos corpos à base de cimento Portland para valores inferiores a 1% em volume, ao que se associa à concomitante redução de uma ordem de grandeza no coeficiente de difusão do íon cloro. Em resumo, os resultados que serão apresentados estão em ressonância com os mais rigorosos critérios de sustentabilidade num setor que urge por melhores perspectivas para o definitivo ingresso na era da industrialização: a construção civil. Porém, a maior virtude deste trabalho é não apenas aprimorar as etapas da engenharia dos materiais cimentícios, mas também aplicar a ciência para o entendimento da origem de sua resistência mecânica. De acordo com nossas comprovações experimentais, a resistência mecânica desses materiais é governada pelas moléculas de água confinadas em películas nanométricas entre as fases que se hidratam do cimento Portland. Essas moléculas de água se comportam como uma fase vítrea e, por sua vez, promovem adesão às superfícies que a confinam. Essa é também uma contribuição deste trabalho para tornar viável a nanotecnologia desses materiais por intermédio de um tema até então inexplorado: a adesão por água confinada. Acreditamos também que o grau de inovação sobre esse tema poderá extrapolar o material em si, visto que a vida como conhecemos é uma conseqüência direta das intrigantes propriedades da água e suas ligações hidrogênio. / The materials engineering afforded the most paramount known advances on the mechanical performance of cementitious materials in the last decades, through either casting techniques or microstructure design. Therewith, it was demonstrated to be false the idea that low mechanical strengths should be inherent to cement-based materials, but, at the same time, the limited ingress of these new materials to fields of great demands relegated them to the condition of merely alternative. The fact that each ton of Portland cement does create another ton of gases related to global warming indicates that the former situation needs to be reviewed. That is why one of the main contributions of this work was to improve casting techniques to render massive production and excellent mechanical performance, in addition to durability, for the cementitious materials. The concept and the construction of a roll compaction equipment were the first step to the cost-effective production of cementitious plates with compressive strength in excess of 200MPa, in addition to a reproducibility inasmuch as that of a technical ceramic. In the same way, the extrusion, a technique able to largely produce components of complex geometries, was also well adapted to cement-based materials which, again, showed excellent reproducibility and bending strength of more than 20MPa. In both, pressing and extrusion techniques, the control of processing steps was enough to get cement-based products whose mechanical strength barely changes, even after exposure to deleterious environments. Hereby, we attribute the widest concept of durability to a material which depends on the mechanical strength throughout its service life. Anyway, we also developed an innovative method to improve the durability of these materials along this work: TEOS impregnation. TEOS is a molecular precursor of silica which reacts with calcium hydroxide to seal the cementitious pores wherefrom it penetrated. Quantitatively, the porosity of Portland cement-based products dropped down to values around 1% in volume, what is related to concomitant reduction of chlorine ion diffusion coefficient of an order of magnitude. In summary, the results that will be demonstrated in the following chapters are in resonance with the most rigorous rules for sustainability, precisely in a field where such an initiative is welcome to help encouraging its industrialization: the building construction. However, it seems that the biggest virtue of this work is not only the improvements for cementitious materials engineering, but also to apply the science for the understanding of the origin of their mechanical strength. According to our experimental evidences, the mechanical strength of these materials is ruled by water molecules which are confined in nanometric layers between the hydrating phases of Portland cement. These water nanolayers behave themselves as glassy phase and, in their turn, promote adhesion to the surfaces which confine them. To the best of our knowledge, this work is one of the most promising contributions to become possible the nanotechnology of these materials, through a subject up to that time unexplored: the adhesion by confined water. Hence, it is likely that the innovation about this subject could exceed the material itself, once life as we know owes its peculiarities to the intrigant properties of water and to their hydrogen bonding.
10

Etude expérimentale de la diffusion du CO2 et des cinétiques de carbonatation de matériaux cimentaires à faible dosage en clinker / Experimental study of CO2 diffusion and carbonation kinetics of cementitious materials with low clinker content

Namoulniara, Diatto Kevin 11 September 2015 (has links)
Une solution pour réduire l’impact environnemental du béton est de substituer une partie du ciment par des additions minérales, comme le laitier de hauts fourneaux. Néanmoins, cette substitution ne doit pas réduire les performances du matériau vis-à-vis de la carbonatation, l’un des principaux phénomènes de vieillissement des structures en béton armé. La carbonatation est une réaction chimique entre la matrice cimentaire et le dioxyde de carbone présent dans l’air. Cette réaction, en plus de former du carbonate de calcium, diminue le pH de la solution interstitielle rendant ainsi les armatures vulnérables à la corrosion. Les essais accélérés de carbonatation montrent, en laboratoire, une grande disparité de comportements entre matériaux cimentaires très faiblement poreux à hautes performances mécaniques et matériaux plus poreux en usage dans les ouvrages courants. L’objectif de cette thèse est de mieux comprendre le phénomène de carbonatation des matériaux cimentaires, notamment ceux contenant du laitier de hauts-fourneaux. Nous avons procédé en découplant les phénomènes impliqués dans la carbonatation que sont la diffusion gazeuse, les réactions chimiques et les transferts hydriques (séchage). La première partie de ces travaux de thèse a nécessité le développement et la validation d’un dispositif de mesure expérimental du coefficient de diffusion du CO2. Ce dernier a permis une étude paramétrique sur pâtes mettant en évidence l’influence de la composition et de la carbonatation sur la diffusion. La seconde partie a porté sur l’étude des cinétiques de carbonatation de pâtes en fonction du degré de saturation, après une mise à l’équilibre hydrique sur une longue période. Ces cinétiques ont été étudiées, sur échantillons de faibles dimensions, au moyen d’un suivi des évolutions pondérales et d’analyses thermogravimétriques, pour l’identification des hydrates résiduels et des carbonates formés. Nous avons ainsi mis en évidence des différences de comportement des hydrates et des liants vis-à-vis de la carbonatation impliquant la microstructure du matériau. / One solution for reducing the environmental impact of concrete is to substitute a part of cement by mineral additions, such as granulated blast furnace slag. However, this substitution should not reduce the performances of concrete with respect to carbonation, one of the main ageing phenomena of reinforced concrete structures. Carbonation is a chemical reaction between the cement matrix and the carbon dioxide from the atmosphere. In addition to the formation of calcium carbonate, this reaction results in a pH reduction of the pore solution and a risk of corrosion. Laboratory accelerated tests show a wide disparity between the carbonation resistance of high mechanical performances concretes with low porosity and the resistance of more porous and more usual ones. The objective of this thesis is to better understand the phenomenon of carbonation of cementitious materials, including those containing blast furnace slags. This work was carried out by decoupling the phenomena involved in carbonation that are gaseous diffusion, chemical reactions and water transfers. First, an experimental device for measuring the CO2 diffusion coefficient was developed. After validation, the latter was used in a parametric study carried out on cement pastes showing the influence of composition and carbonation on the diffusion coefficient. The second part of the thesis work focused on studying the kinetics of carbonation of pastes with respect to the degree of water saturation. Prior to carbonation, the studied pastes were conserved during a long period at various RH to achieve hydric equilibrium. The carbonation kinetics of small size samples of pastes was studied by means of monitoring of weight changes and thermogravimetric analyzes for identification of residual hydrates and formed carbonates. We have thus shown differences in behavior of hydrates and binders during carbonation involving the material microstructure.

Page generated in 0.1373 seconds