• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

After the Flow: Landscape Response to the Emplacement of Holocene Lava Flows, Central Oregon Cascades, USA

Deligne, Natalia, Deligne, Natalia January 2012 (has links)
Effusive volcanic eruptions repave landscapes rapidly with lava flows, resetting the underlying landscape and ecosystem. The unique physical properties of lava pose interesting challenges for recovery, as lava flows can be highly permeable while lava itself is dense, sterile, and generally inhospitable towards life. This dissertation examines two aspects of landscape recovery following lava flow emplacement: (1) hydrologic adaptation of surface and groundwater to recent volcanism and (2) plant colonization of young lava flows. I examine two sites in the central Oregon Cascades: the c. 3 ka Sand Mountain volcanic field (SMVF), located in the headwaters of the McKenzie River, a critical water resource for the state of Oregon, and the c. 1.5 ka Collier Cone lava flow, originating on the north flanks of North Sister volcano. My investigation of the SMVF and upper McKenzie River watershed reveals a complex volcanic history with profound impacts on the configuration and short-term discharge of the McKenzie River: lava flows from the SMVF and other Holocene vents have buried, dammed, and altered the path of the McKenzie River. Moreover, given the large groundwater contribution from the SMVF to the McKenzie River, I estimate that SMVF activity caused McKenzie River discharge in present-day Eugene, Oregon to decrease by up to 20% for days to months at a time; future regional mafic volcanic activity could have a similar impact. The SMVF and the Collier Cone lava flow are notable for the juxtaposition of barren exposed lava and mature forests on the same or similarly aged lava flows. I use a combination of LiDAR analysis, field observations, and soil characterization to examine soil and vegetation at these two sites and find that the presence of an external soil source greatly facilitates plant establishment, growth, and survival. Here, external soil sources are syn- or post-eruptive tephra (SMVF) or flood-borne deposits (Collier Cone lava flow). External soil appears to provide a substrate for plants to grow in along with key nutrients and sufficient moisture; overall, external soil sources are key for the initial recovery following an effusive volcanic disturbance. This dissertation includes co-authored material submitted for publication.
2

Recent Mafic Eruptions at Newberry Volcano and in the Central Oregon Cascades: Physical Volcanology and Implications for Hazards

McKay, Daniele, McKay, Daniele January 2012 (has links)
Mafic eruptions have been the dominant form of volcanic activity in central Oregon throughout the Holocene. These eruptions have produced cinder cones, extensive lava flows, and tephra blankets. In most cases, the extent and volume of the tephra blankets has not been determined, despite the fact that future tephra production would pose considerable hazards to transportation, infrastructure, and public health. The economy of the region, which is largely based in tourism, would also be negatively impacted. For this reason, developing a better understanding of the extent and dynamics of tephra production at recent mafic vents is critical, both in terms of mitigating the hazards associated with future eruptions and in improving our scientific understanding of explosive mafic activity. Here I present detailed field and laboratory studies of tephra from recent mafic vents at Newberry Volcano and in the central Oregon High Cascades. Studies of Newberry vents show that eruption style is strongly correlated with eruptive volume, that extensive magma storage and assimilation occurred prior to the eruption of these vents, and that minimum pre-magmatic water content as recorded by plagioclase was 2.5 wt.%. Detailed mapping and physical studies of tephra deposits from High Cascades vents show that several recent eruptions produced extensive tephra deposits. These deposits are physically similar to well-documented historic eruptions that have been characterized as violent strombolian. At least one Cascade cinder cone (Sand Mountain) produced a tephra deposit that is unusually large in volume and characterized by uniformly fine-grained clasts, which is interpreted as evidence for syn-eruptive interaction with external water. Microtextural characteristics of tephra, along with an evaluation of possible water sources, support this interpretation. These investigations demonstrate that magma storage and eruption style at mafic vents is both variable and complex. Additionally, these studies show that cinder cones in central Oregon have the potential to erupt much more explosively than previously assumed. The results of this study will be an important tool for developing comprehensive regional hazard assessments. This dissertation includes previously published and unpublished co-authored material.

Page generated in 0.0635 seconds