Spelling suggestions: "subject:"bindender zones"" "subject:"bindender jones""
1 |
Physical Volcanology of the 1666 C.E. Cinder Cone Eruption, Lassen Volcanic National Park, CAMarks, Jessica, Marks, Jessica January 2012 (has links)
Cinder Cone is the most recent cinder cone eruption in the continental United States at ~350 years old. This study examines the physical characteristics of the explosive deposit of the volcano in order to infer eruption timing, style, and mechanisms. Building on previous work and using spatial extent, field relationships, and grain size, componentry, and textural data of ten samples from one column, this study demonstrates that Cinder Cone erupted in at least two distinct phases with at least two distinct eruption styles. This speaks to the changing magma supply and transport processes occurring beneath the volcano. Curiosities about the eruption include the extensive degree of contamination that contributed abundant quartz xenocrysts to all the deposits. Future work includes determining the extent and mechanism/s of contamination and tephra component creation. These data are important for informing hazard assessments of areas with abundant cinder cone volcanoes.
|
2 |
Recent Mafic Eruptions at Newberry Volcano and in the Central Oregon Cascades: Physical Volcanology and Implications for HazardsMcKay, Daniele, McKay, Daniele January 2012 (has links)
Mafic eruptions have been the dominant form of volcanic activity in central Oregon throughout the Holocene. These eruptions have produced cinder cones, extensive lava flows, and tephra blankets. In most cases, the extent and volume of the tephra blankets has not been determined, despite the fact that future tephra production would pose considerable hazards to transportation, infrastructure, and public health. The economy of the region, which is largely based in tourism, would also be negatively impacted. For this reason, developing a better understanding of the extent and dynamics of tephra production at recent mafic vents is critical, both in terms of mitigating the hazards associated with future eruptions and in improving our scientific understanding of explosive mafic activity.
Here I present detailed field and laboratory studies of tephra from recent mafic vents at Newberry Volcano and in the central Oregon High Cascades. Studies of Newberry vents show that eruption style is strongly correlated with eruptive volume, that extensive magma storage and assimilation occurred prior to the eruption of these vents, and that minimum pre-magmatic water content as recorded by plagioclase was 2.5 wt.%. Detailed mapping and physical studies of tephra deposits from High Cascades vents show that several recent eruptions produced extensive tephra deposits. These deposits are physically similar to well-documented historic eruptions that have been characterized as violent strombolian. At least one Cascade cinder cone (Sand Mountain) produced a tephra deposit that is unusually large in volume and characterized by uniformly fine-grained clasts, which is interpreted as evidence for syn-eruptive interaction with external water. Microtextural characteristics of tephra, along with an evaluation of possible water sources, support this interpretation.
These investigations demonstrate that magma storage and eruption style at mafic vents is both variable and complex. Additionally, these studies show that cinder cones in central Oregon have the potential to erupt much more explosively than previously assumed. The results of this study will be an important tool for developing comprehensive regional hazard assessments.
This dissertation includes previously published and unpublished co-authored material.
|
3 |
Volatiles in basaltic magmas from central Mexico: From subduction to eruptionJohnson, Emily Renee 06 1900 (has links)
xvi, 167 p. ; ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Volatiles, particularly H 2 O, play an important role in subduction zone magmatism, from instigating melting of the mantle wedge to influencing the explosivity of eruptions at the surface. To better understand both small-scale eruptive processes and large-scale melt generation processes, concentrations of H 2 O, CO 2 , Cl and S were measured in olivine-hosted melt inclusions from nine monogenetic volcanoes across the Michoacan-Guanajuato Volcanic Field (MGVF) in central Mexico.
Melt inclusions, tiny blebs of melt trapped within crystals during growth, record pre-eruptive melt compositions and dissolved volatile contents. Analyses of olivine-hosted melt inclusions from the long-lived (15 years) eruption of Volcan Jorullo illustrate the complexities of cinder cone eruptions. The later-erupted melt inclusions record decreases in crystallization depths, increases in magma storage time, and shallow assimilation of granitic bedrock, suggesting significant evolution of the magma plumbing system over time.
Because melt inclusions are trapped at variable depths during magma crystallization, they record progressive degassing of melts during ascent and eruption. Degassing of basaltic melts is variable due to differences in solubility of the volatile components. Estimated volatile solubilities based on variations in melt inclusion data for the MGVF suggest that Cl and S have high solubility, with little to no degassing of these species during ascent and eruption, whereas H 2 O and CO 2 show evidence of substantial degassing. Furthermore, increases in concentrations of incompatible elements in melt inclusions correlate with extents of degassing, suggesting that degassing during ascent drives melt crystallization in many cinder cone eruptions.
The volatile contents of mafic arc magmas as revealed by melt inclusions reflect the influx of H 2 O-rich components from the subducted slab to the mantle wedge. Across-arc patterns in volatile and incompatible trace element concentrations for MGVF magmas show that the flux of H 2 O-rich subduction components remains high for large distances across the arc. These data, combined with oxygen isotope analyses of olivine phenocrysts and 2-D thermo-mechanical models of the subduction zone, suggest a complex origin for the H 2 O-rich subduction components, involving dehydration of subducted sediment and storage of volatiles in hydrous minerals in the mantle wedge.
This dissertation includes co-authored materials both previously published and submitted for publication. / Adviser: Paul J. Wallace
|
4 |
Magmatic volatile contents and explosive cinder cone eruptions in the High Cascades: Recent volcanism in Central Oregon and Northern California / Recent volcanism in Central Oregon and Northern CaliforniaRuscitto, Daniel M., 1981- 03 1900 (has links)
xvi, 182 p. : col. ill. / Volatile components (H 2 O, CO 2 , S, Cl) dissolved in magmas influence all aspects of volcanic activity from magma formation to eruption explosivity. Understanding the behavior of volatiles is critical for both mitigating volcanic hazards and attaining a deeper understanding of large-scale geodynamic processes. This work relates the dissolved volatile contents in olivine-hosted melt inclusions from young volcanics in the Central Oregon and Northern California Cascades to inferred magmatic processes at depth and subsequent eruptive activity at the surface.
Cinder cone eruptions are the dominant form of Holocene volcanism in the Central Oregon segment of the High Cascades. Detailed field study of deposits from three cinder cones in Central Oregon reveals physical and compositional similarities to explosive historic eruptions characterized as violent strombolian. This work has important implications for future hazard assessments in the region. Based on melt inclusion data, pre-eruptive volatile contents for seven calc-alkaline cinder cones vary from 1.7-3.6 wt.% H 2 O, 1200-2100 ppm S, and 500-1200 ppm Cl. Subarc mantle temperatures inferred from H 2 O and trace elements are similar to or slightly warmer than temperatures in other arcs, consistent with a young and hot incoming plate.
High-magnesium andesites (HMA) are relatively rare but potentially important in the formation of continental crust. Melt inclusions from a well-studied example of HMA from near Mt. Shasta, CA were examined because petrographic evidence for magma mixing has stimulated a recent debate over the origin of HMA magmas. High volatile contents (3.5-5.6 wt.% H 2 O, 830-2900 ppm S, 1590-2580 ppm Cl), primitive host crystals, and compositional similarities with experiments suggest that these inclusions represent mantle-derived magmas.
The Cascades arc is the global end member, warm-slab subduction zone. Primitive magma compositions from the Cascades are compared to data for arcs spanning the global range in slab thermal state to examine systematic differences in slab-derived components added to the mantle wedge. H 2 O/Ce, Cl/Nb, and Ba/La ratios negatively correlate with inferred slab surface temperatures predicted by geodynamic models. Slab components become increasingly solute-rich as slab surface temperatures increase from ∼550 to 950°C at 120 km depth.
This dissertation includes previously published and unpublished co-authored material. / Committee in charge: Dr. Paul J. Wallace, Chair and Advisor;
Dr. Katharine Cashman, Member;
Dr. Ilya Bindeman, Member;
Dr. Richard Taylor, Outside Member
|
Page generated in 0.0732 seconds