• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Explosion structures in Grande Ronde basalt of the Columbia Riverbasalt group, near Troy, Oregon

Orzol, Leonard Lee 01 January 1987 (has links)
Explosion structures occur in flows of Grande Ronde Basalt in the study area near Troy, Oregon. Data from nineteen stratigraphic sites indicate that the maximum number of flows that contain explosion structures at any one site is six. In the informally named Troy flow, explosion structures are widespread.
2

Early high Cascade silicic volcanism : analysis of the McKenzie Canyon and Lower Bridge tuff

Eungard, Daniel W. 31 July 2012 (has links)
Silicic volcanism in the central Oregon Cascade range has decreased in both the size and frequency of eruptions from its initiation at ~40 Ma to present. The reasons for this reduction in silicic volcanism are poorly constrained. Studies of the petrogenesis of these magmas have the potential for addressing this question by providing insight into the processes responsible for producing and erupting silicic magmas. This study focuses on two extensive and well-preserved ash-flow tuffs from within the ~4-8 Ma Deschutes Formation of central Oregon, which formed after the transition from Western Cascade volcanism to the modern High Cascade. Documentation of outcrop extent, outcrop thickness, clast properties, and samples provide the means to estimate a source location, minimum erupted volumes, and to constrain eruptive processes. Major and trace element chemistry of glass and minerals constrain the petrogenesis and chemical evolution of the system. The tuffs selected for this study, the Lower Bridge and McKenzie Canyon, are the first known silicic units originating from the Cascade Arc following the reorganization from Western Cascade to High Cascade Volcanism at ~8 Ma. These eruptions were significant in producing a minimum of ~5 km�� DRE each within a relatively short timeframe. These tuffs are sourced from some vent or edifices related to the Three Sisters Volcanic Complex, and capture an early phase of the volcanic history of that region. The chemical composition of the tuffs indicates that the Lower Bridge erupted predominately rhyolitic magma with dacitic magma occurring only in small quantities in the latest stage of the eruption while McKenzie Canyon Tuff erupted first as a rhyolite and transitioned to a basaltic andesite with co-mingling and incomplete mixing of the two magma types. Major and trace element concentrations in minerals and glass indicate that the basaltic andesite and rhyolite of the McKenzie Canyon Tuff were well convected and stored in separate chambers. Geothermometry of the magmas indicate that the rhyolites are considerably warmer (~850��) than typical arc rhyolites. Trace element compositions indicate that both the Lower Bridge and McKenzie Canyon Tuff experienced mixing between a mantle derived basaltic melt and a rhyolitic partial melt derived from gabbroic crust. Rhyolites of the Lower Bridge Tuff incorporate 30-50% partial melt following 0->60% fractionation of mantle derived melts. The McKenzie Canyon Tuff incorporates 50-100% of a partial melt of a mafic crust with up to 15% post mixing fractionation. The results of this study suggest that production of voluminous silicic magmas within the Cascade Arc crust requires both fractionation of incoming melts from the mantle together with mixing with partial melts of the crust. This provides a potential explanation for the decrease in silicic melt production rates from the Western Cascades to the High Cascades related to declining subduction rate. As convergence along the Cascade margin became more oblique during the Neogene, the consequent slowing rate of mantle melt production will result in a net cooling of the crust, inhibiting the production of rhyolitic partial melts. Without these partial melts to provide the rhyolitic end member to the system, the system will evolve to the mafic melt and fractionation dominated regime that has existed along Cascadia throughout the Quaternary. / Graduation date: 2013
3

Field Mapping Investigation and Geochemical Analysis of Volcanic Units within the Dinner Creek Tuff Eruptive Center, Malheur County, Eastern Oregon

Cruz, Matthew 05 September 2017 (has links)
The Dinner Creek Tuff is a mid-Miocene rhyolitic to dacitic ignimbrite, consisting of four cooling units with 40Ar/39Ar ages 16--15 Ma. Previous geologists have suspected that the source of the tuff is located in northwestern Malheur County, eastern Oregon. This broad area is called the Dinner Creek Tuff Eruptive Center. This thesis summarizes field work, XRF/ICP-MS geochemistry, thin section petrography, and SEM feldspar analysis from the summers of 2015 and 2016. The main purpose of this study is to identify sources for the Dinner Creek Tuff units within the Dinner Creek Tuff Eruptive Center. The secondary purpose is to map lava flows that pre-date and post-date the Dinner Creek Tuff, and correlate them with regionally extensive volcanic units. Two volcanic centers related to the Dinner Creek Tuff were identified. The southern volcanic center, centered at Castle Rock, is a caldera and source of the Dinner Creek Tuff unit 1 (DIT1). Rheomorphic, densely welded DIT1 is over 300 m thick along the east side of Castle Rock. The northwestern margin of the caldera has been uplifted along faults, showing vertically foliated tuff dikes and associated mega-breccia deposits. Up to 200 m of incipiently welded tuffs, and fluvial volcanoclastic sediments were deposited on the caldera floor, which has been uplifted due to resurgence and regional extension, creating the complex structural relationships between the volcanic units. The northern volcanic center is located at Ironside Mountain, where densely welded rheomorphic Dinner Creek Tuff unit 2 (DIT2) is exposed in outcrops over 600 m thick. The top of the DIT2 consists of glassy, moderately welded tuff. Sources for the DIT2 are tuff dikes along the south and western flanks of Ironside Mountain. The thick deposits of DIT2 at Ironside Mountain indicate that the mountain is an uplifted caldera, herein named the Ironside Mountain caldera. Uplift may have been due to resurgence, but it is most likely due to normal faulting along the Border Fault, a major regional normal fault that strikes across the northern margin of the caldera. Pre-Dinner Creek Tuff lava flows occur throughout the study area, and can be correlated with the Strawberry Volcanics and the Basalt of Malheur Gorge. A distinct lava flow, herein called the Ring Butte trachy-basalt occurs within the center of the study area, and is distinct from regional lava flows. Following the eruptions of the Dinner Creek Tuff units 1 & 2, aphyric basaltic-andesite and icelandite intrude into, and overlie the intra-caldera tuffs and caldera floor sediments at both calderas. These aphyric lavas are similar in appearance and stratigraphic position with the regionally extensive Hunter Creek basalt. Porphyritic olivine basalt overlies the aphyric Hunter Creek basalt at the Castle Rock caldera. This porphyritic lava is similar in appearance and major/trace element geochemistry to the regional Tim's Peak basalt.
4

Magmatic volatile contents and explosive cinder cone eruptions in the High Cascades: Recent volcanism in Central Oregon and Northern California / Recent volcanism in Central Oregon and Northern California

Ruscitto, Daniel M., 1981- 03 1900 (has links)
xvi, 182 p. : col. ill. / Volatile components (H 2 O, CO 2 , S, Cl) dissolved in magmas influence all aspects of volcanic activity from magma formation to eruption explosivity. Understanding the behavior of volatiles is critical for both mitigating volcanic hazards and attaining a deeper understanding of large-scale geodynamic processes. This work relates the dissolved volatile contents in olivine-hosted melt inclusions from young volcanics in the Central Oregon and Northern California Cascades to inferred magmatic processes at depth and subsequent eruptive activity at the surface. Cinder cone eruptions are the dominant form of Holocene volcanism in the Central Oregon segment of the High Cascades. Detailed field study of deposits from three cinder cones in Central Oregon reveals physical and compositional similarities to explosive historic eruptions characterized as violent strombolian. This work has important implications for future hazard assessments in the region. Based on melt inclusion data, pre-eruptive volatile contents for seven calc-alkaline cinder cones vary from 1.7-3.6 wt.% H 2 O, 1200-2100 ppm S, and 500-1200 ppm Cl. Subarc mantle temperatures inferred from H 2 O and trace elements are similar to or slightly warmer than temperatures in other arcs, consistent with a young and hot incoming plate. High-magnesium andesites (HMA) are relatively rare but potentially important in the formation of continental crust. Melt inclusions from a well-studied example of HMA from near Mt. Shasta, CA were examined because petrographic evidence for magma mixing has stimulated a recent debate over the origin of HMA magmas. High volatile contents (3.5-5.6 wt.% H 2 O, 830-2900 ppm S, 1590-2580 ppm Cl), primitive host crystals, and compositional similarities with experiments suggest that these inclusions represent mantle-derived magmas. The Cascades arc is the global end member, warm-slab subduction zone. Primitive magma compositions from the Cascades are compared to data for arcs spanning the global range in slab thermal state to examine systematic differences in slab-derived components added to the mantle wedge. H 2 O/Ce, Cl/Nb, and Ba/La ratios negatively correlate with inferred slab surface temperatures predicted by geodynamic models. Slab components become increasingly solute-rich as slab surface temperatures increase from ∼550 to 950°C at 120 km depth. This dissertation includes previously published and unpublished co-authored material. / Committee in charge: Dr. Paul J. Wallace, Chair and Advisor; Dr. Katharine Cashman, Member; Dr. Ilya Bindeman, Member; Dr. Richard Taylor, Outside Member
5

Structural and volcanic evolution of the Glass Buttes area, High Lava Plains, Oregon

Boschmann, Darrick E. 29 November 2012 (has links)
The Glass Buttes volcanic complex is a cluster of bimodal (basalt-rhyolite), Miocene to Pleistocene age lava flows and domes located in Oregon's High Lava Plains province, a broad region of Cenozoic bimodal volcanism in south-central Oregon. The High Lava Plains is deformed by northwest-striking faults of the Brothers Fault Zone, a diffuse, ~N40°W trending zone of en echelon faults cutting ~250 km obliquely across the High Lava Plains. Individual fault segments within the Brothers Fault Zone are typically <20 km long, strike ~N40°W, have apparent normal separation with 10-100 m throw. A smaller population of ~5-10 km long faults striking ~N30°E exhibits mutually crosscutting relationships with the dominant northwest striking faults. Basaltic volcanic rocks in the Glass Buttes area erupted during the late Miocene and Pleistocene. The oldest and youngest lavas are 6.49±0.03 Ma and 1.39±0.18 Ma, respectively, based on ⁴⁰Ar/³⁹Ar ages of five basaltic units. Numerous small mafic vents both within and around the margins of the main silicic dome complex are commonly localized along northwest-striking faults of the Brothers Fault Zone. These vents erupted a diverse suite of basalt to basaltic andesite lava flows that are here differentiated into 15 stratigraphic units based on hand sample texture and mineralogy as well as major and trace element geochemistry. The structural fabric of the Glass Buttes area is dominated by small displacement, discontinuous, en echelon, northwest-striking fault scarps that result from normal to slightly oblique displacements and are commonly linked by relay ramps. Northwest alignment of basaltic and rhyolitic vents, paleotopography, and cross-cutting relationships suggest these faults have been active since at least 6.49±0.03 Ma, the age of the rhyolite lavas in the eastern Glass Buttes are. Faults displace Quaternary sedimentary deposits indicating these structures continue to be active into the Quaternary. Long-term extension rates across northwest-striking faults calculated from 2-5 km long cross section restorations range from 0.004 – 0.02 mm/yr with an average of 0.12 mm/yr. A subordinate population of discontinuous northeast-striking faults form scarps and exhibit mutually cross-cutting relationships with the dominant northwest-striking population. Cross-cutting relationships indicate faulting on northeast-striking faults ceased sometime between 4.70±0.27 Ma and 1.39±0.18 Ma. Gravity data at Glass Buttes reveals prominent northwest- and northeast-trending gravity gradients that closely parallel the strikes of surface faults. These are interpreted as large, deep-seated, normal faults that express themselves in the young basalts at the surface as the discontinuous, en echelon fault segments seen throughout the study area and BFZ in general. Elevated geothermal gradients are localized along these deep-seated structures at two locations: (1) where northwest- and northeast-striking faults intersect,(2) along a very prominent northwest-striking active normal fault bounding the southwest flank of Glass Butte. High average heat flow and elevated average geothermal gradients across the High Lava Plains, and the presence of hydrothermal alteration motivated geothermal resource exploration at Glass Buttes. Temperature gradient drilling by Phillips Petroleum and others between 1977-1981 to depths of up to 600 m defined a local geothermal anomaly underlying the Glass Buttes volcanic complex with a maximum gradient of 224 °C/km. Stratigraphic constraints indicate that near-surface hydrothermal alteration associated with mercury ores ceased before 4.70±0.27 Ma, and is likely associated with the 6.49±0.03 Ma rhyolite eruptions in the eastern part of Glass Buttes. The modern thermal anomaly is not directly related to the pre-4.70±0.27 Ma hydrothermal system; rather it is likely a result of deep fluid circulation along major extensional faults in the area. / Graduation date: 2013 / Includes accompanying DVD with digital data supplement (8 GB).

Page generated in 0.0539 seconds