Spelling suggestions: "subject:"central dimple algebra"" "subject:"central dimple álgebra""
1 |
Cohomological Invariants of Quadratic FormsHarvey, Ebony Ann January 2010 (has links)
Thesis advisor: Benjamin V. Howard / Given a field <italic>F</italic>, an algebraic closure <italic>K</italic> and an <italic>F</italic>-vector space <italic>V</italic>, we can tensor the space <italic>V</italic> with the algebraic closure <italic>K</italic>. Two quadratic spaces of the same dimension become isomorphic when tensored with an algebraic closure. The failure of this isomorphism over <italic>F</italic> is measured by the Hasse invariant. This paper explains how the determinants and Hasse Invariants of quadratic forms are related to certain cohomology classes constructed from specific short exact sequences. In particular, the Hasse Invariant is defined as an element of the Brauer group. / Thesis (MA) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
|
2 |
A Survey of the Classification of Division AlgebrasAshburner, Michelle Roshan Marie January 2008 (has links)
For a given field F we seek all division algebras over F up to isomorphism. This question was first investigated for division algebras of finite dimension over F by Richard Brauer. We discuss the construction of the Brauer group and some examples. Crossed products and PI algebras are then introduced with a focus on Amitsur's non-crossed product algebra. Finally, we look at some modern results of Bell on the Gelfand-Kirillov dimension of finitely generated algebras over F and the classification of their division subalgebras.
|
3 |
A Survey of the Classification of Division AlgebrasAshburner, Michelle Roshan Marie January 2008 (has links)
For a given field F we seek all division algebras over F up to isomorphism. This question was first investigated for division algebras of finite dimension over F by Richard Brauer. We discuss the construction of the Brauer group and some examples. Crossed products and PI algebras are then introduced with a focus on Amitsur's non-crossed product algebra. Finally, we look at some modern results of Bell on the Gelfand-Kirillov dimension of finitely generated algebras over F and the classification of their division subalgebras.
|
4 |
Rational embeddings of the Severi Brauer varietyMeth, John Charles 30 September 2010 (has links)
In an attempt to prove Amitsur's Conjecture for cyclic subgroups of the Brauer group, we look at rational embeddings of the Severi Brauer variety of an algebra into its norm hypersurface. We enlarge the collection of such embeddings, and generalize them to embeddings of generalized Severi Brauer varieties into determinantal varieties. / text
|
Page generated in 0.0902 seconds