Spelling suggestions: "subject:"masse invariant"" "subject:"masse envariant""
1 |
On real and p-adic BezoutiansAdduci, Silvia María 07 January 2011 (has links)
We study the quadratic form induced by the Bezoutian of two polynomials p and q, considering four problems. First, over R, in the separable case we count the number of configurations of real roots of p and q for which the Bezoutian has a fixed signature. Second, over Qp we develop a formula for the Hasse invariant of the Bezoutian. Third, we formulate a conjecture for the behavior of the Bezoutian in the non separable case, and offer a proof over R. We wrote a Pari code to test it over Qp and Q and found no counterexamples. Fourth, we state and prove a theorem that we hope will help prove the conjecture in the near future. / text
|
2 |
Cohomological Invariants of Quadratic FormsHarvey, Ebony Ann January 2010 (has links)
Thesis advisor: Benjamin V. Howard / Given a field <italic>F</italic>, an algebraic closure <italic>K</italic> and an <italic>F</italic>-vector space <italic>V</italic>, we can tensor the space <italic>V</italic> with the algebraic closure <italic>K</italic>. Two quadratic spaces of the same dimension become isomorphic when tensored with an algebraic closure. The failure of this isomorphism over <italic>F</italic> is measured by the Hasse invariant. This paper explains how the determinants and Hasse Invariants of quadratic forms are related to certain cohomology classes constructed from specific short exact sequences. In particular, the Hasse Invariant is defined as an element of the Brauer group. / Thesis (MA) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
|
3 |
Forma traço sobre algumas extensões galoisianas de corpos p-ÁdicosPrado, Janete do [UNESP] 28 February 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-02-28Bitstream added on 2014-06-13T20:08:01Z : No. of bitstreams: 1
prado_j_me_sjrp.pdf: 438115 bytes, checksum: 072493cefd49a6603f89810da896f173 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Seja K um corpo p-ádico, com p 6= 2 e F K uma extensão galoisiana de K de grau n: Então F pode ser visto como espa»co quadrático sobre K, com a forma quadrática dada por T(x) = trFjK(x2), para x 2 F: Determinaremos os invariantes determinante, dimensão e invariante de Hasse desta forma quadrática para n igual a 2,3 e 4. / Let K be a p-adic eld with p 6= 2 and F a Galois extension eld of K of degree n: Then F can be viewed as a quadratic space over K under the quadratic form T(x) = trFjK(x2) for x 2 F. The invariants of this quadratic form dimension, determinant and Hasse invariant are given in the case when n is equal to 2,3 and 4.
|
4 |
Forma traço sobre algumas extensões galoisianas de corpos p-Ádicos /Prado, Janete do. January 2005 (has links)
Orientador: Clotilzio Moreira dos Santos / Banca: Ires Dias / Banca: Aparecida Francisco da Silva / Resumo: Seja K um corpo p-ádico, com p 6= 2 e F K uma extensão galoisiana de K de grau n: Então F pode ser visto como espa»co quadrático sobre K, com a forma quadrática dada por T(x) = trFjK(x2), para x 2 F: Determinaremos os invariantes determinante, dimensão e invariante de Hasse desta forma quadrática para n igual a 2,3 e 4. / Let K be a p-adic eld with p 6= 2 and F a Galois extension eld of K of degree n: Then F can be viewed as a quadratic space over K under the quadratic form T(x) = trFjK(x2) for x 2 F. The invariants of this quadratic form dimension, determinant and Hasse invariant are given in the case when n is equal to 2,3 and 4. / Mestre
|
Page generated in 0.0619 seconds