• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Corpos abelianos com aplicações /

Rayzaro, Oyran Silva. January 2009 (has links)
Orientador: Antonio Aparecido de Andrade / Banca: Andréia Cristina Ribeiro / Banca: Jéfferson Luiz Rocha Bastos / Resumo: Neste trabalho vemos que a imagem de um ideal do anel dos inteiros dos corpos de números, via o homomorfismo de Minkowski, é um reticulado, chamado de reticulado algébrico. Assim, o principal objetivo deste trabalho é a construção de reticulados algébricos de dimensão 2; 4; 6 e 8, com densidade de centro ótimo. / Abstract: In this work, we see that the image of an ideal from the algebraic integer ring of the numbers ¯elds by the Minkowski homomorphism is a lattice, named algebraic lattice. In this way, the main aim of this work is the construction of algebraic lattices of dimensions 2,4,6 and 8, with the center density excellent. / Mestre
2

Forma traço sobre algumas extensões galoisianas de corpos p-Ádicos /

Prado, Janete do. January 2005 (has links)
Orientador: Clotilzio Moreira dos Santos / Banca: Ires Dias / Banca: Aparecida Francisco da Silva / Resumo: Seja K um corpo p-ádico, com p 6= 2 e F K uma extensão galoisiana de K de grau n: Então F pode ser visto como espa»co quadrático sobre K, com a forma quadrática dada por T(x) = trFjK(x2), para x 2 F: Determinaremos os invariantes determinante, dimensão e invariante de Hasse desta forma quadrática para n igual a 2,3 e 4. / Let K be a p-adic eld with p 6= 2 and F a Galois extension eld of K of degree n: Then F can be viewed as a quadratic space over K under the quadratic form T(x) = trFjK(x2) for x 2 F. The invariants of this quadratic form dimension, determinant and Hasse invariant are given in the case when n is equal to 2,3 and 4. / Mestre

Page generated in 0.0788 seconds