Spelling suggestions: "subject:"quadratic for. eng"" "subject:"cuadratic for. eng""
1 |
Corpos abelianos com aplicações /Rayzaro, Oyran Silva. January 2009 (has links)
Orientador: Antonio Aparecido de Andrade / Banca: Andréia Cristina Ribeiro / Banca: Jéfferson Luiz Rocha Bastos / Resumo: Neste trabalho vemos que a imagem de um ideal do anel dos inteiros dos corpos de números, via o homomorfismo de Minkowski, é um reticulado, chamado de reticulado algébrico. Assim, o principal objetivo deste trabalho é a construção de reticulados algébricos de dimensão 2; 4; 6 e 8, com densidade de centro ótimo. / Abstract: In this work, we see that the image of an ideal from the algebraic integer ring of the numbers ¯elds by the Minkowski homomorphism is a lattice, named algebraic lattice. In this way, the main aim of this work is the construction of algebraic lattices of dimensions 2,4,6 and 8, with the center density excellent. / Mestre
|
2 |
Forma traço sobre algumas extensões galoisianas de corpos p-Ádicos /Prado, Janete do. January 2005 (has links)
Orientador: Clotilzio Moreira dos Santos / Banca: Ires Dias / Banca: Aparecida Francisco da Silva / Resumo: Seja K um corpo p-ádico, com p 6= 2 e F K uma extensão galoisiana de K de grau n: Então F pode ser visto como espa»co quadrático sobre K, com a forma quadrática dada por T(x) = trFjK(x2), para x 2 F: Determinaremos os invariantes determinante, dimensão e invariante de Hasse desta forma quadrática para n igual a 2,3 e 4. / Let K be a p-adic eld with p 6= 2 and F a Galois extension eld of K of degree n: Then F can be viewed as a quadratic space over K under the quadratic form T(x) = trFjK(x2) for x 2 F. The invariants of this quadratic form dimension, determinant and Hasse invariant are given in the case when n is equal to 2,3 and 4. / Mestre
|
Page generated in 0.0788 seconds