• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ideální Bayesovský pozorovatel s redukovanou detekční mapou / Ideal Bayesian Observer with reduced detectability map

Amemori, Josef January 2016 (has links)
Title: Ideal Bayesian Observer with reduced detectability map Author: Josef Amemori Department: Department of Software and Computer Science Education Supervisor: Mgr. Filip Děchtěrenko, Department of Software and Computer Science Education Abstract: A computational modeling of the human vision is a challenging task. In recent years, a biologically inspired model Ideal Bayesian Observer was created for the visual search task (Najemnik & Geisler, 2005). The model predicts eye movements when searching for Gabor patch in 1/f noise. In their work, they observed similarity between distributions of fixations and saccades predicted by Ideal Bayesian Observer and distributions of fixations and saccades from a human observer. In this work, we have implemented Ideal Bayesian Observer with degenerated visual field and compared the model with behavior of a human. Keywords: Ideal Bayesian Observer, eye movements, modeling, central scotoma
2

Etude des capacités en vision périphérique chez le sujet sain et contribution de la pathologie (maculopathies) / The capabilities of peripheral vision in healthy subjects and in pathologies inducing central vision loss

Thibaut, Miguel 22 September 2015 (has links)
Contrairement à la vision fovéale qui assure une perception détaillée de notre environnement visuelle, la périphérie ne permet qu’une vision globale. C’est pourquoi, nous bougeons nos yeux en permanence afin que l’image visuelle soit localisée sur la fovéa, où la résolution spatiale est la meilleure. Cependant, certaines pathologies sont à l’origine d’une perte de la vision centrale et provoquent de nombreuses difficultés dans la vie quotidienne notamment pour lire, conduire, identifier un visage, un objet ou encore naviguer dans l’espace. Contrairement à la lecture, peu d’études ont été réalisées sur la perception des objets et de l’espace dans ces maculopathies où ne persiste que la vision périphérique. Nous nous sommes intéressés à l’étude des capacités de la vision périphérique dans la perception des scènes et des objets.Dans un premier temps, nous avons étudié les capacités de la vision périphérique chez le sujet sain. Nous avons montré qu’en dépit de sa faible résolution spatiale, il était possible de reconnaître des objets et des scènes même à grande excentricité.Dans un second temps, nous nous sommes focalisés sur les effets de la perte de la vision centrale sur la reconnaissance des objets et des scènes. Nous montrons que l’absence de vision centrale induit une plus faible stabilité de fixation associée à un déficit marqué sur l’identification des objets et des scènes, ainsi que sur la recherche visuelle, notamment en condition d’encombrement.Ces études contribuent à comprendre la contribution de la vision centrale et de la vision périphérique sur la reconnaissance des objets et des scènes mais aussi sur le rôle de l’information contextuelle et comment les patients ayant perdu la vision centrale perçoivent le monde réel. / Unlike foveal vision that allows a detailed perception of our visual environment, the periphery only allows a coarse vision. This is why we have to move our eyes all the time in order to localize the image on the fovea, where spatial resolution is better. However, some diseases induce a loss of central vision and cause many difficulties in everyday life especially in reading, driving, face recognition and spatial cognition in general. Unlike word and face perception scene and object perception have had litte investigations in maculopathies in which people have to rely on peripheral vision. This thesis is based on the study of the capabilities of peripheral vision in scenes and objects perception.In the first part we studied scne perception at very large eccentricities in normally sighted young people. We show that, in spite of its low resolution, peripheral vision is efficient to recognize objects and scenes even at very large eccentricities (above 50°).In the second part, we investigated on effects of central vision loss on object and scene perception in identification and visual search tasks on small or realistic panoramic displays. We report a series of experiments showing that central vision loss induced a lower fixation stability which had a strong impact on object and scene and on visual search, especially in crowded conditions.These studies contribute to the understanding of the contribution of central and peripheral vision on object and scene gist recognition but also on the role of contextual information and how patients with central vision loss perceive real-world scenes.
3

Improving Peripheral Vision Through Optical Correction and Stimulus Motion

Lewis, Peter January 2016 (has links)
The loss of central vision subsequent to macular disease is often extremely debilitating. People with central field loss (CFL) must use other peripheral areas of the retina in order to see; areas with inferior resolution capacity, which are also affected by off-axis optical errors. The overall aim of the work encompassed by this thesis was to identify and evaluate methods of improving vision for people with CFL; with focus on the effects of off-axis optical correction and stimulus motion on resolution acuity and contrast sensitivity. Off-axis optical errors were measured using a commercially-available COAS-HD VR open-view aberrometer. We used adaptive psychophysical methods to evaluate grating resolution acuity and contrast sensitivity in the peripheral visual field; drifting gratings were employed to   measure the effect of motion on these two measures of visual performance. The effect of sphero-cylindrical correction and stimulus motion on visual performance in healthy eyes and in subjects with CFL was also studied; in addition, the effect of adaptive optics aberration correction was examined in one subject with CFL. The COAS-HD aberrometer provided rapid and reliable measurements of off-axis refractive errors. Correction of these errors gave improvements in low-contrast resolution acuity in subjects with higher amounts of oblique astigmatism. Optical correction also improved high-contrast resolution acuity in most subjects with CFL, but not for healthy subjects. Adaptive optics correction improved both high and low contrast resolution acuity in the preferred retinal locus of a subject with CFL. The effect of stimulus motion depended on spatial frequency; motion of 7.5 Hz improved contrast sensitivity for stimuli of low spatial frequency in healthy and CFL subjects. Motion of 15 Hz had little effect on contrast sensitivity for low spatial frequency but resulted in reduced contrast sensitivity for higher spatial frequencies in healthy subjects. Finally, high-contrast resolution acuity was relatively insensitive to stimulus motion in the periphery. This thesis has served to broaden the knowledge regarding peripheral optical errors, stimulus motion and their effects on visual function, both in healthy subjects and in people with CFL. Overall it has shown that correction of off-axis refractive errors is important for optimizing peripheral vision in subjects with CFL; the use of an open-view aberrometer simplifies the determination of these errors. In addition, moderate stimulus motion can have a beneficial effect on contrast sensitivity for objects of predominantly low spatial frequency.

Page generated in 0.0501 seconds