Spelling suggestions: "subject:"centrales dde stockage"" "subject:"centrales dde stockages""
1 |
Approche multi-agents pour la gestion des fermes éoliennes offshore / A multi-agent approach for offshore wind farms managementPaniah, Crédo 21 May 2015 (has links)
La raréfaction des sources de production conventionnelles et leurs émissions nocives ont favorisé l’essor notable de la production renouvelable, plus durable et mieux répartie géographiquement. Toutefois, son intégration au système électrique est problématique. En effet, la production renouvelable est peu prédictible et issue de sources majoritairement incontrôlables, ce qui compromet la stabilité du réseau, la viabilité économique des producteurs et rend nécessaire la définition de solutions adaptées pour leur participation au marché de l’électricité. Dans ce contexte, le projet scientifique Winpower propose de relier par un réseau à courant continu les ressources de plusieurs acteurs possédant respectivement des fermes éoliennes offshore (acteurs EnR) et des centrales de stockage de masse (acteurs CSM). Cette configuration impose aux acteurs d’assurer conjointement la gestion du réseau électrique.Nous supposons que les acteurs participent au marché comme une entité unique : cette hypothèse permet aux acteurs EnR de tirer profit de la flexibilité des ressources contrôlables pour minimiser le risque de pénalités sur le marché de l’électricité, aux acteurs CSM de valoriser leurs ressources auprès des acteurs EnR et/ou auprès du marché et à la coalition de faciliter la gestion des déséquilibres sur le réseau électrique, en agrégeant les ressources disponibles. Dans ce cadre, notre travail s’attaque à la problématique de la participation au marché EPEX SPOT Day-Ahead de la coalition comme une centrale électrique virtuelle ou CVPP (Cooperative Virtual Power Plant). Nous proposons une architecture de pilotage multi-acteurs basée sur les systèmes multi-agents (SMA) : elle permet d’allier les objectifs et contraintes locaux des acteurs et les objectifs globaux de la coalition.Nous formalisons alors l’agrégation et la planification de l’utilisation des ressources comme un processus décisionnel de Markov (MDP), un modèle formel adapté à la décision séquentielle en environnement incertain, pour déterminer la séquence d’actions sur les ressources contrôlables qui maximise l’espérance des revenus effectifs de la coalition. Toutefois, au moment de la planification des ressources de la coalition, l’état de la production renouvelable n’est pas connue et le MDP n’est pas résoluble en l’état : on parle de MDP partiellement observable (POMDP). Nous décomposons le POMDP en un MDP classique et un état d’information (la distribution de probabilités des erreurs de prévision de la production renouvelable) ; en extrayant cet état d’information de l’expression du POMDP, nous obtenons un MDP à état d’information (IS-MDP), pour la résolution duquel nous proposons une adaptation d’un algorithme de résolution classique des MDP, le Backwards Induction.Nous décrivons alors un cadre de simulation commun pour comparer dans les mêmes conditions nos propositions et quelques autres stratégies de participation au marché dont l’état de l’art dans la gestion des ressources renouvelables et contrôlables. Les résultats obtenus confortent l’hypothèse de la minimisation du risque associé à la production renouvelable, grâce à l’agrégation des ressources et confirment l’intérêt de la coopération des acteurs EnR et CSM dans leur participation au marché de l’électricité. Enfin, l’architecture proposée offre la possibilité de distribuer le processus de décision optimale entre les différents acteurs de la coalition : nous proposons quelques pistes de solution dans cette direction. / Renewable Energy Sources (RES) has grown remarkably in last few decades. Compared to conventional energy sources, renewable generation is more available, sustainable and environment-friendly - for example, there is no greenhouse gases emission during the energy generation. However, while electrical network stability requires production and consumption equality and the electricity market constrains producers to contract future production a priori and respect their furniture commitments or pay substantial penalties, RES are mainly uncontrollable and their behavior is difficult to forecast accurately. De facto, they jeopardize the stability of the physical network and renewable producers competitiveness in the market. The Winpower project aims to design realistic, robust and stable control strategies for offshore networks connecting to the main electricity system renewable sources and controllable storage devices owned by different autonomous actors. Each actor must embed its own local physical device control strategy but a global network management mechanism, jointly decided between connected actors, should be designed as well.We assume a market participation of the actors as an unique entity (the coalition of actors connected by the Winpower network) allowing the coalition to facilitate the network management through resources aggregation, renewable producers to take advantage of controllable sources flexibility to handle market penalties risks, as well as storage devices owners to leverage their resources on the market and/or with the management of renewable imbalances. This work tackles the market participation of the coalition as a Cooperative Virtual Power Plant. For this purpose, we describe a multi-agent architecture trough the definition of intelligent agents managing and operating actors resources and the description of these agents interactions; it allows the alliance of local constraints and objectives and the global network management objective.We formalize the aggregation and planning of resources utilization as a Markov Decision Process (MDP), a formal model suited for sequential decision making in uncertain environments. Its aim is to define the sequence of actions which maximize expected actual incomes of the market participation, while decisions over controllable resources have uncertain outcomes. However, market participation decision is prior to the actual operation when renewable generation still is uncertain. Thus, the Markov Decision Process is intractable as its state in each decision time-slot is not fully observable. To solve such a Partially Observable MDP (POMDP), we decompose it into a classical MDP and an information state (a probability distribution over renewable generation errors). The Information State MDP (IS-MDP) obtained is solved with an adaptation of the Backwards Induction, a classical MDP resolution algorithm.Then, we describe a common simulation framework to compare our proposed methodology to some other strategies, including the state of the art in renewable generation market participation. Simulations results validate the resources aggregation strategy and confirm that cooperation is beneficial to renewable producers and storage devices owners when they participate in electricity market. The proposed architecture is designed to allow the distribution of the decision making between the coalition’s actors, through the implementation of a suitable coordination mechanism. We propose some distribution methodologies, to this end.
|
Page generated in 0.0653 seconds