• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comprehensive Validation of Numerical Predictions for Liquefaction-Induced Lateral Spreading / 液状化による地盤の側方流動に対する数値解析予測の包括的な妥当性確認

Vargas, Tapia Ruben Rodrigo 25 March 2024 (has links)
京都大学 / 新制・論文博士 / 博士(工学) / 乙第13618号 / 論工博第4215号 / (主査)教授 渦岡 良介, 教授 肥後 陽介, 准教授 上田 恭平, 教授 安原 英明 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
2

Floatation of underground structures in liquefiable soils

Chian, Siau Chen January 2012 (has links)
No description available.
3

New mechanism-based design approaches for spudcan foundations in clay

Hossain, Muhammad Shazzad January 2009 (has links)
[Truncated abstract] Three-legged mobile jack-up rigs supported on spudcan foundations are used to perform most offshore drilling in shallow to moderate water depths, and are now capable of operating in water depths up to 130 m. With the gradual move towards heavier rigs in deeper water, and continuing high accident rates during preloading of the spudcan foundations, appraisal of the performance and safety of jack-up rigs has become increasingly important. A crucial aspect of this is to improve understanding of the mechanisms of soil flow around spudcan foundations undergoing continuous large penetration, and to provide accurate estimates of spudcan penetration resistance, avoiding excessive conservatism. Spudcan foundations undergo progressive penetration during preloading, contrasting with onshore practice where a footing is placed at the base of a pre-excavated hole or trench. However, spudcan penetration is generally assessed within the framework used for onshore foundations, considering the bearing resistance of spudcans pre-placed at different depths within the soil profile. The lack of accurate design approaches that take proper account of the nature of spudcan continuous penetration, which is particularly important in layered soil profiles, is an important factor in the high rate of accidents. ... It was found that when a spudcan penetrated into single layer clay, there were three distinct penetration mechanisms: during initial penetration, soil flow extended upwards to the surface leading to surface heave and formation of a cavity above the spudcan; with further penetration, soil began to flow back gradually onto the top of the spudcan; during deep penetration, soil back-flow continued to occur while the initial cavity remained unchanged. For spudcan penetration in stiff-over-soft clay, four interesting aspects of the soil flow mechanisms were identified: (a) vertically downward motion of the soil and consequent deformation of the layer interface; (b) trapping of the stronger material beneath the spudcan, with this material being carried down into the underlying soft layer; (c) delayed back-flow of soil around the spudcan into the cavity formed above the spudcan; (d) eventual localised flow around the embedded spudcan, surrounded by strong soil. At some stage during continuous spudcan penetration, the soil starts to flow back into the cavity above the spudcan. The resulting back-flow provides a seal above the penetrating spudcan and limits the cavity depth. It was shown that the current offshore design guidelines are based on the wrong criterion for when back-flow occurs. New design charts with robust expressions were developed to estimate the point of back-flow and hence the cavity depth above the installed spudcan. Load-penetration responses were presented in terms of normalised soil properties and geometry factors for both single layer and two-layer clay profiles, taking full account of the observed flow mechanisms. Further, guidelines were suggested to evaluate the likelihood and severity of spudcan punch-through failure in layered clays. Finally, the effect of strain-rate and strain-softening was examined, in an attempt to model real soil behaviour more closely. Adjustment factors were proposed to modify the design approaches developed on the basis of ideal elastic-perfectly plastic soil behaviour.
4

Lateral response of stiff column-supported shallow foundations

Rivera Rojas, Alfonso Jose 15 May 2019 (has links)
The mechanisms that control the lateral response of stiff column-supported shallow foundations, resulting from the application of horizontal load on shallow foundations supported by stiff columns, are uncertain. Stiff columns constructed in soft clayey soil have been used to support retaining walls and in such cases, the lateral thrust applied behind these geotechnical structures is a source of horizontal loading. For seismic events, stiff columns constructed in soft clayey soil have been used to support shallow foundations subjected to horizontal load coming from the upper structure of buildings. Due to its practical applications, it has become important to understand the consequences of subjecting a shallow foundation supported by stiff columns to horizontal load by identifying the factors that control the lateral response of such systems. A series of centrifuge tests were carried out to examine the lateral response of stiff column-supported shallow foundations. The experimental trends suggested that the thickness of the coarse-granular mattress placed above the soil-column composite, called the Load Transfer Platform (LTP), controlled the lateral capacity and the overall lateral response of these systems. A numerical study using the finite element method confirmed the experimental trends. A parametric analysis was conducted with the purpose of investigating the influence of different geometry-based and material-based variables in the lateral response of these systems. The results of the parametric analysis further confirmed the importance of the thickness of the LTP in controlling the lateral response. The parametric results also emphasized the contribution of other variables to this lateral response, and these variables included the undrained shear strength of the soft clayey soil around the stiff columns, the stiff column diameter, and the spacing of the stiff columns after they are constructed in the soft clayey soil. / Doctor of Philosophy / Ground improvement is the process of improving the properties of weak soils. In practice, there are several ways to accomplish the ground improvement of weak soils. One way is to use stiff columns. Stiff columns are solid cylinders that are constructed in the weak soil in order to produce a stiff and strong soil-column composite capable of better supporting the square-shaped foundations of structures. Under horizontal load, there is uncertainty on the factors that control the lateral behavior of the stiff columns when used for the support of the square-shaped foundations of structures. An experimental and numerical approach was used to determine these factors and to understand their influence in the lateral behavior of such systems. The findings showed that the controlling factors of this lateral behavior included the thickness of a sand layer placed above the stiff columns, the diameter of the stiff columns, the spacing of the stiff columns after they are constructed in the weak soil, and the strength of the soil around the stiff columns. These findings will aid in improving the design of stiff columns used for the support of square-shaped foundations of structures subjected to horizontal load.

Page generated in 0.0501 seconds