• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

K-set Polygons and Centroid Triangulations

El Oraiby, Wael 09 October 2009 (has links) (PDF)
This thesis is a contribution to a classical problem in computational and combinatorial geometry: the study of the k-sets of a set V of n points in the plane. First we introduce the notion of convex inclusion chain that is an ordering of the points of V such that no point is inside the convex hull of the points that precede it. Every k-set of an initial sub-sequence of the chain is called a k-set of the chain. We prove that the number of these k-sets is an invariant of V and is equal to the number of regions in the order-k Voronoi diagram of V. We then deduce an online algorithm for the construction of the k-sets of the vertices of a simple polygonal line such that every vertex of this line is outside the convex hull of all its preceding vertices on the line. If c is the total number of k-sets built with this algorithm, the complexity of our algorithm is in O(n log n + c log^2k) and is equal, per constructed k-set, to the complexity of the best algorithm known. Afterward, we prove that the classical divide and conquer algorithmic method can be adapted to the construction of the k-sets of V. The algorithm has a complexity of O(n log n + c log^2k log(n/k)), where c is the maximum number of k-sets of a set of n points. We finally prove that the centers of gravity of the k-sets of a convex inclusion chain are the vertices of a triangulation belonging to the family of so-called centroid triangulations. This family notably contains the dual of the order-k Voronoi diagram. We give an algorithm that builds particular centroid triangulations in O(n log n + k(n- k) log^2 k) time, which is more efficient than all the currently known algorithms.
2

K-set Polygons and Centroid Triangulations / K-set Polygones et Triangulations Centroïdes

El Oraiby, Wael 09 October 2009 (has links)
Cette thèse est une contribution à un problème classique de la géométrie algorithmique et combinatoire : l’étude des k-sets d’un ensemble V de n points du plan. Nous introduisons d’abord la notion de chaîne d’inclusion de convexes qui est un ordonnancement des points de V tel qu’aucun point n’appartient à l’enveloppe convexe de ceux qui le précèdent. Tout k-set d’une sous-suite commençante de la chaîne est appelé un k-set de la chaîne. Nous montrons que le nombre de ces k-sets est un invariant de V et qu’il est égal au nombre de régions du diagramme de Voronoï d’ordre k de V. Nous en déduisons un algorithme en ligne pour construire les k-sets des sommets d’une ligne polygonale simple dont chaque sommet est à l’extérieur de l’enveloppe convexe des sommets qui le précèdent sur la ligne. Si c est le nombre total de k-sets construits, la complexité de notrealgorithme est en O(n log n+c log^2 k) et est équivalente, par k-set construit, à celle du meilleur algorithme connu. Nous montrons ensuite que la méthode algorithmique classique de division-fusion peut être adaptée à la construction des k-sets de V. L’algorithme qui en résulte a une complexité enO(n log n+c log^2 k log(n/k)), où c est le nombre maximum de k-sets d’un ensemble de n points.Nous prouvons enfin que les centres de gravité des k-sets d’une chaîne d’inclusion de convexes sont les sommets d’une triangulation qui appartient à la même famille de triangulations, dites centroïdes, que le dual du diagramme de Voronoï d’ordre k. Nous en d´déduisons un algorithme qui construit des triangulations centroïdes particulières en temps O(n log n+k(n-k) log^2 k), ce qui est plus efficace que les algorithmes connus jusque là. / This thesis is a contribution to a classical problem in computational and combinatorial geometry: the study of the k-sets of a set V of n points in the plane. First we introduce the notion of convex inclusion chain that is an ordering of the points of V such that no point is inside the convex hull of the points that precede it. Every k-set of an initial sub-sequence of the chain is called a k-set of the chain. We prove that the number of these k-sets is an invariant of V and is equal to the number of regions in the order-k Voronoi diagram of V. We then deduce an online algorithm for the construction of the k-sets of the vertices of a simple polygonal line such that every vertex of this line is outside the convex hull of all its preceding vertices on the line. If c is the total number of k-sets built with this algorithm, the complexity of our algorithm is in O(n log n + c log^2k) and is equal, per constructed k-set, to the complexity of the best algorithm known. Afterward, we prove that the classical divide and conquer algorithmic method can be adapted to the construction of the k-sets of V. The algorithm has a complexity of O(n log n + c log^2k log(n/k)), where c is the maximum number of k-sets of a set of n points. We finally prove that the centers of gravity of the k-sets of a convex inclusion chain are the vertices of a triangulation belonging to the family of so-called centroid triangulations. This family notably contains the dual of the order-k Voronoi diagram. We give an algorithm that builds particular centroid triangulations in O(n log n + k(n- k) log^2 k) time, which is more efficient than all the currently known algorithms.

Page generated in 0.0971 seconds