Spelling suggestions: "subject:"géométrie combinatorial"" "subject:"éométrie combinatorial""
1 |
Contributions à l'étude des arrangements: Equivalences combinatoires et perturbationsVo Phi, Khanh 22 September 1994 (has links) (PDF)
Cette thèse est une contribution à l'étude des arrangements. L'idée est le calcul de la combinatoire d'un arrangement de courbes ou surfaces compte tenu du fait que les données et les opérations ne seront connues qu'à une précision près. Dans cette démarche, il se pose un problème qui est de savoir si la combinatoire d'un arrangement est stable lorsque les éléments constitutifs sont perturbés. Un préliminaire indispensable est alors d'établir une définition rigoureuse adaptée à nos besoin concernant l'équivalence des arrangements. Le travail consiste essentiellement en un développement des notions mathématiques nécessaires pour étudier l'équivalence, la construction, les perturbations d'arrangements. Quelques résultats en terme d'analyse de complexité sont également énoncés. Des résultats sont obtenus sur les perturbations d'arrangements d'hyperplans en dimension quelconque. Dans le plan est étudiée une méthode particulière de calcul des arrangements des courbes, avec un exemple détaillé sur les cercles. Utilisant des transformations classiques de dualité, des applications des propriétés d'équivalence des arrangements d'hyperplans aux configurations de points et aux diagrammes de Voronoï sont aussi données
|
2 |
Triangulating symplectic manifoldsDistexhe, Julie 22 May 2019 (has links) (PDF)
Le but de cette thèse est d'étudier les structures symplectiques dans la catégorie des variétés linéaires par morceaux (PL). La question centrale est de déterminer si toute variété symplectique lisse $(M,omega)$ peut être triangulée de manière symplectique, au sens où il existe une variété linéaire par morceaux $K$ et une triangulation $h :K -> M$ telle que $h^*omega$ est une forme symplectique constante par morceaux. Nous étudions d'abord un problème plus simple, qui consiste à trianguler les formes volumes lisses. Étant donnée une variété lisse $M$ munie d'une forme volume $Omega$, nous montrons qu'il existe une triangulation lisse $h :K -> M$ telle que $h^*Omega$ est une forme volume constante par morceaux. En particulier, les variétés symplectiques lisses de dimension 2 admettent donc des triangulations symplectiques. Étant donnée une variété symplectique fermée $(M,omega)$, nous montrons ensuite que pour certaines triangulations lisses $h :K -> M$, on peut, par une modification arbitrairement petite du complexe $K$, supposer que la forme $h^*omega$ est de rang maximal le long de tous les simplexes de $K$. Ce résultat permet d'approximer arbitrairement bien toute variété symplectique fermée par une variété symplectique PL. Nous nous intéressons finalement au cas d'une sous-variété symplectique $M$ d'un espace ambiant qui admet lui-même une triangulation symplectique. Nous montrons qu'il est possible de construire un cobordisme entre la sous-variété $M$ considérée et une approximation lisse par morceaux de celle-ci, triangulée par un complexe symplectique. / In this thesis, we study symplectic structures in a piecewise linear (PL) setting. The central question is to determine whether a smooth symplectic manifold can be triangulated symplectically, in the sense that there exists a triangulation $h :K -> M$ such that $h^*omega$ is a piecewise constant symplectic form on $K$. We first focus on a simpler related problem, and show that any smooth volume form $Omega$ on $M$ can be triangulated. This means that there always exists a triangulation $h :K -> M$ such that $h^*Omega$ is a piecewise constant volume form. In particular, symplectic surfaces admit symplectic triangulations. Given a closed symplectic manifold $(M,omega)$, we then prove that there exists triangulations $h :K -> M$ for which the piecewise smooth form $h^*omega$ has maximal rank along all the simplices of $K$. This result allows to approximate arbitrarily closely any closed symplectic manifold by a PL one. Finally, we investigate the case of a symplectic submanifold $M$ of an ambient space which is itself symplectically triangulated, and give the construction of a cobordism between $M$ and a piecewise smooth approximation of $M$, triangulated by a symplectic complex. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
3 |
Optimization and Realizability Problems for Convex GeometriesMerckx, Keno 25 June 2019 (has links) (PDF)
Convex geometries are combinatorial structures; they capture in an abstract way the essential features of convexity in Euclidean space, graphs or posets for instance. A convex geometry consists of a finite ground set plus a collection of subsets, called the convex sets and satisfying certain axioms. In this work, we study two natural problems on convex geometries. First, we consider the maximum-weight convex set problem. After proving a hardness result for the problem, we study a special family of convex geometries built on split graphs. We show that the convex sets of such a convex geometry relate to poset convex geometries constructed from the split graph. We discuss a few consequences, obtaining a simple polynomial-time algorithm to solve the problem on split graphs. Next, we generalize those results and design the first polynomial-time algorithm for the maximum-weight convex set problem in chordal graphs. Second, we consider the realizability problem. We show that deciding if a given convex geometry (encoded by its copoints) results from a point set in the plane is ER-hard. We complete our text with a brief discussion of potential further work. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
4 |
Contributions en géométrie combinatoire : rayons du cercle circonscrit différentes, théorèmes géométriques de type Hall, théorèmes fractionnaires de type Turán, matroïdes chemin du réseau et transversales de Kneser / Explorations in combinatorial geometry : Distinct circumradii, geometric Hall-type theorems, fractional Turán-type theorems, lattice path matroids and Kneser transversalsMartinez Sandoval, Leonardo Ignacio 12 January 2016 (has links)
La géométrie combinatoire est une large et belle branche des mathématiques. Cette thèse doctorale se compose de l'étude de cinq sujets différents dans ce domaine. Même si les problèmes et les techniques utilisés pour y faire face sont divers, ils partagent le mêeme objectif: Étudier l'interaction entre les structures combinatoires et géométriques. Dans le chapitre 1, nous étudions le problème suivant : pour un entier positif k, combien de points en position générale devons-nous prendre dans le plan de sorte que nous pouvons toujours trouver k d'entre eux définissant des triangles avec un rayon du cercle circonscrit distinct ? Cette question a été posée par Paul Erdös en 1975 qui a lui même proposé une solution en 1978. Toutefois, la preuve a omis par inadvertance un cas non trivial. Nous avons repris ce cas et donné une solution à la question en utilisant des outils de base de la géométrie algébrique et nous fournissons une borne polynomiale pour le nombre de points nécessaires.Dans le chapitre 2, nous sommes intéressés par de généralisations géométriques du critère de Hall pour les couplages dans les graphes bipartits (1935). Nous obtenons des théorèmes géométriques type Hall pour des ensembles convexes disjoints et pour points en position générale dans l'espace euclidien. Les outils de ce chapitre sont topologiques, et l'approche est motivés par une méthode remarquable introduite par Aharoni et Haxell en $2000$ ainsi que par ses généralisations.D'autre part, dans le chapitre 3, nous commençons par un théorème de Helly fractionné de 1979 due à A. Liu et M. Katchalski pour motiver un résultat combinatoire. Nous étudions des conditions combinatoires que des familles de graphes doivent avoir pour permettre d'obtenir des versions plus fine du théorème de Turán. Nous trouvons des liens intéressants entre les nombres de Turán, les nombres chromatiques et les nombres de clique dans la famille. Les outils de ce chapitre sont purement combinatoires.Dans le chapitre 4, nous nous concentrons sur l'obtention des résultats pour la bien connue classe des matroïde chemin du réseau introduite par Bonin, de Mier et Noy en 2003. La contribution principale est de prouver pour cette classe la validité d'une conjecture de Merino et Welsh (1999) sur une inégalité de certaines valeurs du polynôme de Tutte. Pour ce faire, nous introduisons et étudions des serpents, une classe spéciale de matroïdes chemin du réseau ``mince''.Enfin, dans le chapitre 5, nous étudions une variante d'un problème des transversales posé par J.L. Arocha, J. Bracho, L. Montejano et J.L. Ramírez-Alfonsín en 2010. Dans leur travaux originaux, ils ont rémarqué que si nous avons peu de points dans l'espace euclidien alors il est possible de trouver une transversale d'une dimension donnée qui travers les enveloppes convexes de tous les k-ensembles de points. De m&eme, ils montrent qu'il est impossible de trouver une telle transversale lorsque nous avons beaucoup de points. Les auteurs donnent des bornes spécifiques et ils laissent aussi quelques problèmes ouverts. Si la définition de transversale est légèrement plus restrictive, alors le problème peut être étudié en utilisant la théorie des matroïdes orientés. Dans la présente thèse, nous fournissons les détails de cette relation et nous donnons des bornes pour la famille de polytopes cycliques. / Combinatorial geometry is a broad and beautiful branch of mathematics. This PhD Thesis consists of the study of five different topics in this area. Even though the problems and the tools used to tackle them are diverse, they share a unifying goal: To explore the interaction between combinatorial and geometric structures.In Chapter 1 we study a problem by Paul Erdös: for a positive integer k, how many points in general position do we need in the plane so that we can always find a k-subset of them defining triangles with distinct circumradii? This question was posed in 1975 and Erdös himself proposed a solution in 1978. However, the proof inadvertently left out a non-trivial case. We deal with the case using basic tools from algebraic geometry and we provide a polynomial bound for the needed number of points.In Chapter 2 we are interested in providing geometric extensions of Hall's criterion for matchings in bipartite graphs (1935). We obtain geometric Hall-type theorems for pairwise disjoint convex sets and for points in general position in euclidean space. The tools of this chapter are topological, and are motivated by a remarkable method introduced by Aharoni and Haxell in 2000 and its generalizations.On the other hand, in Chapter 3 we begin with a fractional Helly theorem from 1979 by A. Liu and M. Katchalski to motivate a combinatorial result. We study combinatorial conditions on families of graphs that allow us to have sharpened variants of Turán's theorem. We find interesting relations between the Turán numbers, the chromatic numbers and the clique numbers of graphs in the family. The tools in this chapter are only combinatorial.In Chapter 4 we focus on obtaining some results for the well studied class of lattice path matroids introduced by Bonin, de Mier and Noy in 2003. The main contribution is proving for this class the validity of a 1999 conjecture of Merino and Welsh concerning an inequality involving certain values of the Tutte polynomial. In order to do this, we introduce and study snakes, a special class of ``thin'' lattice path matroids.Finally, in Chapter 5 we explore a variant of a transversal problem posed by J.L. Arocha, J. Bracho, L. Montejano and J.L. Ramírez-Alfonsín in 2010. In their original work, they realized that if we have few points in euclidean space then it is possible to find a transversal of a given dimension that goes through all the convex hulls of k-subsets of points. Similarly, they show that it is impossible to find such a transversal when we have many points. The authors give some specific bounds and they also leave some open problems. If the definition of transversal is slightly more restrictive, then the problem can be tackled using oriented matroid theory. We provide the details of the relation and we give bounds for the family of cyclic polytopes.
|
5 |
Two level polytopes :geometry and optimizationMacchia, Marco 07 September 2018 (has links)
A (convex) polytope P is said to be 2-level if every hyperplane H that is facet-defining for P has a parallel hyperplane H' that contains all the vertices of P which are not contained in H.Two level polytopes appear in different areas of mathematics, in particular in contexts related to discrete geometry and optimization. We study the problem of enumerating all combinatorial types of 2-level polytopes of a fixed dimension d. We describe the first algorithm to achieve this. We ran it to produce the complete database for d <= 8. Our results show that the number of combinatorial types of 2-level d-polytopes is surprisingly small for low dimensions d.We provide an upper bound for the number of combinatorially inequivalent 2-level d-polytopes. We phrase this counting problem in terms of counting some objects called 2-level configurations, that capture the class of "maximal" rank d 0/1-matrices, including (maximal) slack matrices of 2-level cones and 2-level polytopes. We provide a proof that the number of d-dimensional 2-level configurations coming from cones and polytopes, up to linear equivalence, is at most 2^{O(d^2 log d)}.Finally, we prove that the extension complexity of every stable set polytope of a bipartite graph with n nodes is O(n^2 log n) and that there exists an infinite class of bipartite graphs such that, for every n-node graph in this class, its stable set polytope has extension complexity equal to Omega(n log n). / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
6 |
Combinatorics of finite ordered sets: order polytopes and poset entropyRexhep, Selim 27 June 2016 (has links)
The thesis focuses on two open problems on finite partially ordered sets: the structure of order polytopes and the approximation of the number of linear extensions of a poset by mean of graph entropy. The polytopes considered here are the linear ordering polytope, the semiorder polytope, the interval order polytope, the partial order polytope and also a generalisation of the linear ordering polytope: the linear extension polytope of a fixed poset P. Various results on the structure of theses polytopes are proved in the first part of the thesis. In the second part of the thesis, we improve the existing bounds linking the entropy of the incomparability graph of the poset P and its number of linear extension. / Le but de la thèse est d'étudier deux problèmes ouverts sur les ensembles ordonnés finis: la structure des polytopes d'ordre et l'approximation du nombre d'extensions linéaires d'un ordre partiel au moyen de la notion d'entropie de graphe. Les polytopes considérés sont le polytope des ordres totaux, le polytope des semiordres, le polytope des ordres d'intervalles, le polytope des ordres partiels, ainsi qu'une généralisation du polytope des ordres totaux: le polytope des extensions linéaires d'un ensemble ordonné fixé P. Des résultats sur la structure de ces polytopes sont présentés dans la première partie de la thèse. Dans la deuxième partie de la thèse, nous améliorons les bornes existantes liant l'entropie du graphe d'incomparabilité d'un ordre partiel et son nombre d'extensions linéaires. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
7 |
Contribution à l'extraction et à la représentation des connaissances de l'environnement maritime : proposition d'une architecture dédiée aux applications de navigation / NoTsatcha, Dieudonné 11 December 2014 (has links)
De nos jours, les applications informatiques autonomes sont au centre de grandes préoccupations de la recherche scientifique. Ces dernières sont destinées initialement à des systèmes d'aide à la décision dans des environnements contraints et dynamiques, communément appelés environnements complexes. Elles peuvent dès à présent, à l'aide des avancées de la recherche, permettre de construire et déduire leurs connaissances propres afin d'interagir en temps réel avec leur environnement. Cependant, elles sont confrontées à la difficulté d'avoir une modélisation fidèle du monde réel et des entités qui le composent. L'un des principaux objectifs de nos recherches est de capturer et modéliser la sémantique associée aux entités spatio-temporelles afin d'enrichir leur expressivité dans les SIG ou les systèmes d'aide à la décision. Un service de routage maritime dynamique a été déployé en exploitant cette modélisation. Cet algorithme a été démontré comme optimal en termes d'espace mémoire et de temps de calcul. La sémantique capturée se compose de l'affordance et de la saillance visuelle de l'entité spatiale. Les connaissances associées à cette sémantique sont par la suite représentées par une ontologie computationnelle qui intègre des approches spatio-temporelles. Ces connaissances sont soit déduites du savoir de l'expert du domaine, soit extraites de gros volumes de données textuelles en utilisant des techniques de traitement automatique du langage. L'ontologie computationnelle proposée nous a permis de définir un algorithme de routage maritime dynamique (fonction des évènements ou objets présents dans l'environnement) fondé sur une heuristique itérative monocritère de plus courte distance et bidirectionnelle. L'algorithme BIDA* proposé s'applique sur un graphe itératif qui est une conceptualisation d'une grille hexagonale itérative recouvrant la zone de navigation. Cet algorithme permet aussi la gestion de différents niveaux de résolution. Toujours dans l'initiative de produire un modèle aussi proche que possible du monde réel, l'algorithme BIDA* a été enrichi des stratégies multicritères afin de prendre en compte les différentes contraintes de la navigation maritime. Les contraintes globales et locales auxquelles nous nous sommes intéressés sont la profondeur des eaux, la distance de navigation et la direction de navigation. Le modèle proposé permet ainsi d'enrichir les capacités cognitives des utilisateurs évoluant dans les environnements maritimes et peut aussi être utilisé pour construire des systèmes complètement autonomes explorant ces environnements. Un prototype expérimental de navigation intelligente mettant en oeuvre cette modélisation et proposant un service de routage maritime a été développé dans le cadre de cette thèse. / No
|
8 |
K-set Polygons and Centroid Triangulations / K-set Polygones et Triangulations CentroïdesEl Oraiby, Wael 09 October 2009 (has links)
Cette thèse est une contribution à un problème classique de la géométrie algorithmique et combinatoire : l’étude des k-sets d’un ensemble V de n points du plan. Nous introduisons d’abord la notion de chaîne d’inclusion de convexes qui est un ordonnancement des points de V tel qu’aucun point n’appartient à l’enveloppe convexe de ceux qui le précèdent. Tout k-set d’une sous-suite commençante de la chaîne est appelé un k-set de la chaîne. Nous montrons que le nombre de ces k-sets est un invariant de V et qu’il est égal au nombre de régions du diagramme de Voronoï d’ordre k de V. Nous en déduisons un algorithme en ligne pour construire les k-sets des sommets d’une ligne polygonale simple dont chaque sommet est à l’extérieur de l’enveloppe convexe des sommets qui le précèdent sur la ligne. Si c est le nombre total de k-sets construits, la complexité de notrealgorithme est en O(n log n+c log^2 k) et est équivalente, par k-set construit, à celle du meilleur algorithme connu. Nous montrons ensuite que la méthode algorithmique classique de division-fusion peut être adaptée à la construction des k-sets de V. L’algorithme qui en résulte a une complexité enO(n log n+c log^2 k log(n/k)), où c est le nombre maximum de k-sets d’un ensemble de n points.Nous prouvons enfin que les centres de gravité des k-sets d’une chaîne d’inclusion de convexes sont les sommets d’une triangulation qui appartient à la même famille de triangulations, dites centroïdes, que le dual du diagramme de Voronoï d’ordre k. Nous en d´déduisons un algorithme qui construit des triangulations centroïdes particulières en temps O(n log n+k(n-k) log^2 k), ce qui est plus efficace que les algorithmes connus jusque là. / This thesis is a contribution to a classical problem in computational and combinatorial geometry: the study of the k-sets of a set V of n points in the plane. First we introduce the notion of convex inclusion chain that is an ordering of the points of V such that no point is inside the convex hull of the points that precede it. Every k-set of an initial sub-sequence of the chain is called a k-set of the chain. We prove that the number of these k-sets is an invariant of V and is equal to the number of regions in the order-k Voronoi diagram of V. We then deduce an online algorithm for the construction of the k-sets of the vertices of a simple polygonal line such that every vertex of this line is outside the convex hull of all its preceding vertices on the line. If c is the total number of k-sets built with this algorithm, the complexity of our algorithm is in O(n log n + c log^2k) and is equal, per constructed k-set, to the complexity of the best algorithm known. Afterward, we prove that the classical divide and conquer algorithmic method can be adapted to the construction of the k-sets of V. The algorithm has a complexity of O(n log n + c log^2k log(n/k)), where c is the maximum number of k-sets of a set of n points. We finally prove that the centers of gravity of the k-sets of a convex inclusion chain are the vertices of a triangulation belonging to the family of so-called centroid triangulations. This family notably contains the dual of the order-k Voronoi diagram. We give an algorithm that builds particular centroid triangulations in O(n log n + k(n- k) log^2 k) time, which is more efficient than all the currently known algorithms.
|
Page generated in 0.0597 seconds