• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 12
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 91
  • 26
  • 20
  • 15
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Impedance Response of Alumina-silicon Carbide Whisker Composites

Mebane, David Spencer 08 December 2004 (has links)
The impedance response of silicon carbide whisker-alumina composites is investigated utilizing novel stereological techniques along with a microstructural simulation. The stereological techniques developed allow for a measurement of the trivariate length, radius and orientation distribution of whiskers in the composite from measurements made on two-dimensional sectioning planes. The measured distributions are then utilized in a Monte Carlo simulation that predicts connectivity in the composite for a given volume fraction. It is assumed in the simulation that connectivity factors dominate the electrical response, not interfacial phenomena. The results of the simulation are compared with impedance spectra taken from real samples, and conclusions are drawn regarding the nature of the impedance response.
42

Effects of interfaces and preferred orientation on the electrical response of composites of alumina and silicon carbide whiskers

Bertram, Brian D. 14 November 2011 (has links)
Ceramic-matrix composites of alumina and silicon carbide whiskers have recently found novel commercial application as electromagnetic absorbers. However, a detailed understanding of how materials issues influence the composite electrical response, which underpins this application, has been absent until now. In this project, such composites were electrically measured over a wide range of conditions and modeled in terms of various aspects of the microstructure in order to understand how they work. For this purpose, three types of composites were made by different methods from the same set of ceramic powder blends loaded with different volume fractions of whiskers. In doing so, the interfaces between whiskers, the preferred orientations of whiskers, and the structure of electrically-connected whisker clusters were varied; the whisker aspect-ratio distributions were the same for all methods. At the electrode interfaces, Schottky barriers at the junctions of the electrically-percolating wide-bandgap semiconductor whiskers on the surface were responsible for a significant portion of the total measured impedance. The associated electrical response was studied on the microscopic and macroscopic level, and the gap between these different scales was bridged. Also, a modeling approach was developed for the non-linear behavior of the composite which results from these barriers. In regards to the whiskers within the composite bulk, the effects of various factors on the wide-band frequency dependence of the dielectric response and dc conductivity were explained and contextualized for the electromagnetic absorber application. Such factors include whisker preferred orientation, electrical percolation and cluster structure, the interfaces between electrically-connected SiC whiskers, and porosity. A quantitative correlation between the anisotropy of the microstructure and that of the conductivity was found, and was understood in terms of the interfacial SiC-Al2O3-SiC conduction mechanism. This behavior was shown to differ from the behavior commonly observed for other disordered mixtures of relatively conductive particles dispersed inside insulating polymer hosts. A description of this new mechanism was developed based on an observed correlation between the temperature dependencies of the static and radio-frequency electrical responses. Also, the aforementioned non-linear response model was expanded upon to describe conduction through and across electrically-percolated clusters. The model demonstrates how loading and interface behavior influence the topology and the strength of the non-linear response of the clusters.
43

Influência de cargas de talco nas propriedades microestruturais e mecânicas na matriz de carbetos de silício em compósitos de matriz cerâmica

Sabino, Nilson Biagini 27 February 2007 (has links)
Made available in DSpace on 2017-07-21T20:42:40Z (GMT). No. of bitstreams: 1 NILSON.pdf: 5389834 bytes, checksum: 149d2b8675ec375e2d7f3614952460ef (MD5) Previous issue date: 2007-02-27 / Ceramic Matrix Composites (CMC) are the most recent materials in field composites. The main factors for the good acting of these materials are the choice: of the matrix material, of the reinforcement, of the processing and chemical composition. Ceramic materials possess elastic module very loud, low density, and can support temperatures very discharges, even so they present low toughness. The introduction of a ductile metallic phase in the ceramic can improve its toughness to for frature. The SiC stands among the materials used in the ceramic matrix. Among the metals stands out the aluminum. The infiltration under pressure of a melted (Squeeze Casting) it is one of the methods more used in the production of CMC, being the focus of many searchs. The mechanical properties of a composite varies in function of the ligants addition and addictive in for pre-form. In this work it was obtained CMC of SiC-Talc/AI by "Squeeze Casting" method and investigated the influence of the talc as addictive in the mechanical properties of the ceramic matrix with controlled sizes of particles, intending improvement its mechanical properties of composites obtained. Rectangular test bodies of SiC were made with proportions from 10 to 50% in talc mass. The samples went burned partially at 1100°C, characterized and later infiltrated with aluminum melted at 850°C under pressure. The composites were characterized by optical microscopy and scanning electronic microscopy (SEM), where the different sizes of particles of matrix and the complete infiltration of the channels by melted metal was observed. They were also analyzed by X-ray difraction, showing the presence of phases SiC, Al, Si, SiO2, and MgAl2O4. The result of the flexural module at three points obtained for the proportions of 10 to 50% of talc show the influence of the proportions of addictive in the values of the mechanical properties of these composites. / Os compósitos de matriz cerâmica (CMC) são os mais recentes campo dos compósitos. Os principais fatores para o bom desempenho destes materiais são a escolha: da matriz, do reforço, do processamento e composição química. Materiais cerâmicos possuem módulo elástico muito alto, baixa densidade, e podem suportar temperaturas muito altas, porém apresentam baixa tenacidade. A introdução de uma fase metálica dúctil nas cerâmicas pode melhorar sua tenacidade à fratura. O SiC destaca-se entre os materiais utilizados na matriz cerâmica. Dentre os metais destaca-se o alumínio. A infiltração sob pressão de um fundido (“Squeeze Casting”) é um dos métodos mais utilizados na fabricação de CMC, sendo o foco de muitas pesquisas. As propriedades mecânicas de um compósito variam em função da adição de ligantes e aditivos na pré-forma. Neste trabalho foi obtido CMC de SiC-Talco/Al pelo método "Squeeze Casting" e investigado a influência do talco como aditivo nas propriedades mecânicas da matriz cerâmica com tamanhos controlados de partículas, pretendendo-se obter redução de custo da matéria-prima total do compósito e melhoria de suas propriedades mecânicas. Foram confeccionados corpos de prova retangulares de SiC com proporções de 10 a 50% em massa de talco. As amostras foram parcialmente sinterizadas a 1100ºC, caracterizadas e posteriormente infiltradas com alumínio fundido a 850ºC sob pressão. Os compósitos foram caracterizados por microscopia óptica (MO) e microscopia eletrônica de varredura (MEV), onde se observou os diferentes tamanhos de partículas da matriz a infiltração dos canais pelo metal fundido. Também foram analisadas por difração de Raios X, mostrando a presença das fases SiC, Al, Si, SiO2, e MgAl2O4. O resultado dos ensaios de flexão em três pontos obtidos para as proporções de 10 a 50% de talco mostram a influência das proporções de aditivo nos valores das propriedades mecânicas destes compósitos.
44

Microstructural and microanalytical characterization of laminated (C-SiC) matrix composites fabricated by forced-flow thermal-gradient chemical vapor infiltration (FCVI)

Appiah, Kwadwo Ampofo 05 1900 (has links)
No description available.
45

Compósitos de matriz cerâmica contendo cargas com diferentes condutividades elétricas / Ceramic matrix composites containing fillers with different electrical conductivities

Lage, Raphael Rodrigues 17 August 2018 (has links)
Orientador: Inez Valéria Pagotto Yoshida / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-17T04:03:02Z (GMT). No. of bitstreams: 1 Lage_RaphaelRodrigues_M.pdf: 11995870 bytes, checksum: 4be63a61759fedf30e1ef7e9705c5570 (MD5) Previous issue date: 2010 / Resumo: Neste trabalho pretendeu-se obter compósitos de matriz cerâmica à base de oxicarbeto de silício, SiCxOy, carregados com cargas de diferentes naturezas (grafite (GCM), carbeto de silício (SCM) e siliceto de tungstênio (WCM)), de modo a explorar a influência destas cargas na condutividade das vitrocerâmicas obtidas. Os CMC foram preparados pela pirólise controlada de precursores poliméricos obtidos in situ pela reação de hidrossililação catalisada por um complexo de platina (II), do poli(metilsiloxano) (PMS) e 1,3,5,7- tetrametil-1,3,5,7-tetravinilciclotetrassiloxano (D4Vi), contendo as respectivas cargas previamente dispersas. Foi enfatizado o efeito da natureza das cargas e da matriz na composição e morfologia das fases resultantes nos materiais finais, correlacionando-as com as condutividades elétricas destes. Os compósitos obtidos e a matriz vítrea foram submetidos à caracterização estrutural por ressonância magnética nuclear de Si e C, quando possível, espectroscopia Raman e DRX. Medidas de densidade, volume de poros, e porosidade aberta também foram conduzidas. A morfologia dos materiais cerâmicos foi avaliada pela técnica de microscopia eletrônica de varredura. Por final, medidas de condutividade elétrica por meio da técnica de quatro pontas foram realizadas em todos os materiais que cumpriam os requisitos prévios para esta análise. Os compósitos SCM não apresentaram formação de novas fases, indicando a inércia da carga de SiC diante da matriz não cristalina. Por outro lado a não observação de perda de massa para os compósitos GCM e WCM, juntamente com o surgimento de novas fases, comprovado por DRX, indicaram a reatividade das cargas grafite e WSi2, especialmente à temperatura de 1500°C. A condutividade elétrica dos compósitos correspondeu à natureza das cargas sendo o compósito SCM semicondutor, e os compósitos WCM e GCM condutores. Para o compósito GCM a dependência dos valores de condutividade em relação à quantidade carga, indicou uma transição isolantecondutor por volta de 16,5% em massa de grafite, segundo cálculo efetuado pela equação de percolação / Abstract: In this study, it was intended to obtain ceramic matrix composites (CMC) based on silicon oxycarbide SiCxOy, filled with powders of different nature (graphite (GCM), silicon carbide (SCM), and tungsten silicide (WCM)), in order to explore the influence of these fillers on the electrical conductivity of the vitro-ceramic obtained. CMC was prepared by controlled pyrolysis of polymeric precursors obtained by hydrosilylation reaction, catalyzed by a platinum complex, from poly(methylsiloxane) (PMS) and 1,3,5,7-tetramethyl-1,3,5,7- tetravynilcyclotetrasiloxane (D4Vi), containing the respective fillers previously dispersed in the polymer. The effect of the nature of fillers and matrix was emphasized in the composition and morphology of the resulting phases in the final materials, correlating them with the electrical conductivity of those. The obtained composites were submitted to structural characterization by magnetic nuclear resonance (Si and C), when possible, Raman spectroscopy and X ray diffraction (XRD). Specific mass, pore volume and open porosity were also measured. The morphology of the ceramic materials was evaluated by scanning electronic microscopy (SEM). Finally, electrical conductivity measurements were performed by the four points probe technique. The SCM composites do not present formation of new phases, indicating the inertia of SiC filler. On other hand, there was no observation of mass loss for WCM and GCM, in agreement with the emergence of new phases, proved by XRD, suggests the reactivity of WSi2 and graphite fillers, specially at 1500°C. The electrical conductivity of composites was related to the nature of fillers, SCM was semiconductor, and WCM and GCM were electrical conductor composites. For the GCM composites, the dependence of electrical conductivity as function of graphite content, indicated an insulating-conductor transition around 16,5% in mass of graphite, according to the percolation equation / Mestrado / Quimica Inorganica / Mestre em Química
46

Caractérisation des mécanismes d'endommagement et modélisation du comportement mécanique sous chargements multi-axiaux de tubes composites SiC/SiC / Characterization of the deformation mechanisms and modelling of the mechanical behaviour under multi-axial loadings of SiC/SiC composite tubes

Bernachy-Barbé, Fabien 03 October 2014 (has links)
Les composites SiC/SiC sont envisagés comme matériaux pour des composants de cœur de réacteurs nucléaires du futur. Le dimensionnement de ces structures par la simulation numérique repose sur une modélisation du comportement mécanique de ces matériaux. Ces travaux visent à améliorer la compréhension de leurs mécanismes de déformation afin de construire une loi de comportement à même de prédire la réponse du matériau sous chargements complexes. Une caractérisation approfondie du comportement macroscopique de tubes SiC/SiC multicouches - similaires aux concepts de gaines de combustibles - a été entreprise, par des essais de traction-pression interne, traction-torsion et flexion multi-instrumentés, et a permis de constituer une importante base expérimentale pour la compréhension des mécanismes d'endommagement et l'identification de modèles. Des observations in-situ et après rupture ont permis de quantifier l'orientation des fissures matricielles observées en surface en fonction du type de chargement appliqué. Des mesures de champs de déplacement par Corrélation d'Images Numériques à l'échelle d'un motif du textile ont permis d'apporter des informations fines sur la cinématique de la surface du composite, telles que l'ouverture des fissures ou la déformation des fragments matriciels. Ces mesures ont également permis de mettre en évidence l'importance de la réorientation des torons dans la direction de chargement, mécanisme pouvant expliquer certaines spécificités du comportement macroscopique du fait de son couplage avec la fissuration matricielle. Enfin, ces différentes données expérimentales ont permis de construire un modèle phénoménologique, identifiable sur quatre essais uniaxiaux, permettant de prédire de manière satisfaisante le comportement macroscopique sous divers chargements bi-axés. L'accord de certaines quantités locales, telles que les caractéristiques de la fissuration en traction, ont également été vérifiées. / SiC/SiC composites are candidate materials for in-core components of future nuclear reactors. The analysis of these structures using numerical simulations requires material constitutive laws. The present work focuses on understanding the deformation mechanisms of these materials in order to build a constitutive model able to predict their stress-strain response under complex loadings. An extensive characterization of the mechanical behaviour of SiC/SiC multi-layered tubes – similar to fuel cladding concepts - was carried out, using tension-internal pressure, tension-torsion and bending tests, that allowed to build an important experimental basis for the understanding of the mechanisms and the identification of constitutive laws. In-situ and post-failure observations have allowed quantifying the orientation of surface matrix cracks as a function of the loading type. Full-field measurements using Digital Image Correlation at the tow scale brought precise information on the composite surface kinematics, such as the crack opening or the deformation of the matrix fragments. These measurements also evidence the importance of the tow reorientation, that could explain specific features of the macroscopic behaviour because of its coupling with matrix cracking. Finally, these experimental data allowed to build a constitutive model, identified on only four uniaxial tests, able to predict satisfactorily the macroscopic behaviour under several biaxial loadings. The correct prediction of local quantities, such as the characteristics of the matrix cracking in tension, has also been verified.
47

Modeling Lifetime Performance of Ceramic Matrix Composites with Reduced Order Homogenization Multiscale Methods

Artz, Timothy Steven January 2022 (has links)
Ceramic Matrix Composites (CMC) are attractive material systems for structural applications where resistance to intermediate (700 0C-950 0C) and high temperatures (900 0C-1400 0C) is required and low density is desired. There are currently barriers to a more widespread adoption of CMCs which include less robust simulation tools, which this dissertation seeks to address. A novel unified reduced order homogenization model for initial quasi-static, creep, and fatigue loading of SiC/SiC CMCs at intermediate and high temperatures is proposed. Driven by a single set of parameters, the model can seamlessly transition between initial quasi-static, creep, and fatigue regimes while capturing the complex material response of SiC/SiC CMCs. The reduced order homogenization approach provides a robust and efficient computational platform for analyzing composite behavior. Continuum damage mechanics provides the basis for the initial brittle CMC behavior while a hybrid damage-viscoplasticity model combined with an oxidation driven crack sealing effect drives the time-dependent brittle-ductile material behavior at high temperatures. A temporal multiscale approach extends the spatial multiscale model into fatigue regime at high temperatures, avoiding the computational complexity of modeling each cycle individually. At intermediate temperatures, a one-dimensional model based on the slow crack growth model originally proposed by Iyengar and Curtin is generalized to three dimensions focusing on a woven composite architecture. For this oxidation-assisted rupture model, the constitutive equation in the axial tow direction is governed by the continuum damage mechanics variant of the slow crack-growth model and the availability of oxygen to fibers, which in turn depends on the initial matrix pores and subsequent matrix cracking. The model is verified on two SiC/SiC material systems, S200H and GEA SMI, in both initial quasi-static and time-dependent loading regimes at both high and intermediate temperatures.
48

THE INFLUENCE OF PRINT LAYER ORIENTATION ON THE MECHANICAL PROPERTIES OF SIC AND CF/SIC CMCS FORMED VIA DIRECT INK WRITING

Kyle R Cox (11812169) 19 December 2021 (has links)
Silicon carbide is a useful monolithic and matrix ceramic due to its excellent mechanical properties and corrosion/oxidation resistance at high temperature. This makes it an attractive material for use in advanced applications, such as aircraft engines and high-speed flight. In this study, additively manufactured monolithic SiC and Cf/SiC CMCs, processed via direct ink writing (DIW) of a 53 vol% colloidal suspension, achieved >96% theoretical density through pressureless sintering. When present, fibers are aligned in the direction of the print path. Five different print paths were studied, including a 0o path, 90o path, 0/90o path, 0/15/30/45/60/75/90o path, and 0/30/60/90/60/30/0o path. Four-point bend testing was performed to determine flexural strength and Weibull analysis was performed. Strengths were highest for the 0o print path. The characteristic strength, σo, of this print path was 375 MPa with a Weibull modulus of 7.4 for monolithic SiC and a σo of 361 MPa with a Weibull modulus of 10.7 for Cf/SiC. Weibull modulus was greater for Cf/SiC samples compared to identically printed monolithic SiC samples. SEM and optical microscopy were used to analyze printed parts which showed a high degree of fiber alignment in the direction of the print. Fiber pullout was observed on the fracture surface, as well as intragranular fracture.
49

Foreign Object Damage and Solid Particle Erosion Behavior of Ceramic Matrix Composites

Presby, Michael J. 20 June 2019 (has links)
No description available.
50

Processing and Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics

Cox, Sarah 01 January 2014 (has links)
The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260°C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

Page generated in 0.1108 seconds