• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Search for the Decay KL→π0νν with a Neutron-Insensitive GeV-Energy Photon Detector / 中性子に不感なGeV光子検出器を用いた KL→π0νν崩壊の探索

Maeda, Yosuke 23 March 2016 (has links)
要旨ファイルを2017-04-17に差替え / 京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19502号 / 理博第4162号 / 新制||理||1598(附属図書館) / 32538 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 教授 谷森 達, 准教授 成木 恵 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
2

A Measurement of the Proton's Weak Charge Using an Integration Cerenkov Detector System

Wang, Peiqing 02 September 2011 (has links)
The Q-weak experiment at Thomas Jefferson National Accelerator Facility (USA) will make a precision determination of the proton weak charge with approximately 4% combined statistical and systematic uncertainties via a measurement of the parity violating asymmetry in elastic electron-proton scattering at very low momentum transfer and forward angle. This will allow an extraction of the weak mixing angle at Q^2=0.026 (GeV/c)^2 to approximately 0.3%. The weak mixing angle is a fundamental parameter in the Standard Model of electroweak interactions. At the proposed accuracy, a measured deviation of this parameter from the predicted value would indicate new physics beyond what is currently described in the Standard Model. Without deviation from the predicted value, this measurement would place stringent limits on possible extensions to the Standard Model and constitute the most precise measurement of the proton's weak charge to date. The key experimental apparatus include a liquid hydrogen target, a toroidal magnetic spectrometer and a set of eight Cerenkov detectors. The Cerenkov detectors form the main detector system for the Q-weak experiment and are used to measure the parity violating asymmetry during the primary Q-weak production runs. The Cerenkov detectors form the main subject of this thesis. Following a brief introduction to the experiment, the design, development, construction, installation, and testing of this detector system will be discussed in detail. This is followed by a detailed discussion of detector diagnostic data analysis and the corresponding detector performance. The experiment has been successfully constructed and commissioned, and is currently taking data. The thesis will conclude with a discussion of the preliminary analysis of a small portion of the liquid hydrogen data.
3

A Measurement of the Proton's Weak Charge Using an Integration Cerenkov Detector System

Wang, Peiqing 02 September 2011 (has links)
The Q-weak experiment at Thomas Jefferson National Accelerator Facility (USA) will make a precision determination of the proton weak charge with approximately 4% combined statistical and systematic uncertainties via a measurement of the parity violating asymmetry in elastic electron-proton scattering at very low momentum transfer and forward angle. This will allow an extraction of the weak mixing angle at Q^2=0.026 (GeV/c)^2 to approximately 0.3%. The weak mixing angle is a fundamental parameter in the Standard Model of electroweak interactions. At the proposed accuracy, a measured deviation of this parameter from the predicted value would indicate new physics beyond what is currently described in the Standard Model. Without deviation from the predicted value, this measurement would place stringent limits on possible extensions to the Standard Model and constitute the most precise measurement of the proton's weak charge to date. The key experimental apparatus include a liquid hydrogen target, a toroidal magnetic spectrometer and a set of eight Cerenkov detectors. The Cerenkov detectors form the main detector system for the Q-weak experiment and are used to measure the parity violating asymmetry during the primary Q-weak production runs. The Cerenkov detectors form the main subject of this thesis. Following a brief introduction to the experiment, the design, development, construction, installation, and testing of this detector system will be discussed in detail. This is followed by a detailed discussion of detector diagnostic data analysis and the corresponding detector performance. The experiment has been successfully constructed and commissioned, and is currently taking data. The thesis will conclude with a discussion of the preliminary analysis of a small portion of the liquid hydrogen data.

Page generated in 0.0731 seconds