• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nutritional regulation of the hepatokine FGF21 in the liver : interdependence of the transcription factors ChREBP and PPARα / Régulation nutritionnelle de l'hépatokine FGF21 dans le foie : interdépendance des facteurs de transcription ChREBP et PPARα en réponse au glucose

Iroz, Alison 05 April 2017 (has links)
L’hépatokine FGF21 (Fibroblast Growth factor 21) joue un rôle primordial dans le contrôle de l’homéostasie énergétique. Des études chez l’Homme et l’animal mettent en évidence ses effets bénéfiques dans la lutte contre l’hyperglycémie, la dyslipidémie et l’obésité. Connue pour être induite en réponse au jeûne par le récepteur nucléaire PPARα (Proliferator Activated Receptor α), des études récentes suggèrent l’implication du facteur de transcription ChREBP (Carbohydrate Responsive Element Binding Protein) dans la réponse nutritionnelle de FGF21. Dans ce contexte, les objectifs de thèse ont été : 1) d’obtenir une meilleure compréhension de la régulation de FGF21 dans le foie par le jeûne et le glucose via les acteurs moléculaires ChREBP et PPARα ; 2) de déterminer la relevance physiologique de l’axe ChREBP-PPARα-FGF21 en réponse au glucose. Nos résultats mettent en évidence que l’expression hépatique de ChREBP est nécessaire à l’induction de FGF21 en réponse au glucose in vitro et in vivo. De manière inattendue, lorsque l’expression de PPARα est spécifiquement invalidée dans le foie, la réponse au glucose de FGF21 est diminuée de manière significative car ChREBP ne peut se lier à son élément de réponse de type ChoRE, présent sur le promoteur de fgf21. La réponse synergique de ChREBP et de PPARα sur FGF21 a été également mise en évidence dans des cultures primaires d’hépatocytes humains. Chez les souris invalidées pour PPARα dans le foie, l’absence de FGF21 circulant entraine une augmentation de la préférence au sucrose. Notre étude révèle l’existence d’un dialogue fonctionnel unique entre ChREBP et PPARα pour la régulation de FGF21 en réponse au glucose / The hepatokine FGF21 (Fibroblast Growth factor 21) plays an important role in the control of energy homeostasis. Studies in humans and animals have established FGF21 as an important therapeutic target for its beneficial effects on hyperglycemia, dyslipidemia and obesity. Induced in response to fasting by the PPARα nuclear receptor (Proliferator Activated Receptor α), recent studies suggest the involvement of ChREBP (Carbohydrate Responsive Element Binding) in the nutritional response of FGF21. In this context, the thesis objectives were: 1) to obtain a better understanding of the regulation of FGF21 in the liver by fasting and glucose via the molecular actors ChREBP and PPARα; 2) to determine the physiological relevance of the ChREBP-PPARα-FGF21 axis in response to glucose. Our results demonstrate that hepatic expression of ChREBP is necessary for the induction of FGF21 in response to glucose in vitro and in vivo. Unexpectedly, when PPARα expression is specifically invalidated in the liver, the glucose response of FGF21 is significantly decreased as ChREBP cannot bind to its ChoRE response element present on the fgf21 promoter. The synergistic response of ChREBP and PPARα to FGF21 was also demonstrated in primary cultures of human hepatocytes. In mice deficient for PPARα in the liver, the absence of circulating FGF21 leads to an increase in their preference to sucrose. Our study reveals the existence of a unique functional dialogue between ChREBP and PPARα for the regulation of FGF21 in response to glucose
2

Novel Regulatory Mechanisms Underlying the Expression of the Carbohydrate Response Element Binding Protein (ChREBP): the Roles of Insulin and the POU Protein Oct-1

Sirek, Adam 15 February 2010 (has links)
ChREBP has emerged as one of the key controllers of hepatic lipogenesis. While the function of ChREBP has been extensively investigated, mechanisms underlying its transcriptional regulation remain largely unknown. We located a conserved POU-binding site within mammalian ChREBP promoters, and demonstrated that the POU homeodomain protein Oct-1 binds to this site in the human HepG2 cell line. Oct-1 transfection significantly repressed ChREBP promoter activity 50-75%. Conversely, knockdown of Oct-1 expression with shRNA significantly increased ChREBP expression levels. Furthermore, insulin treatment resulted in a two-fold activation of ChREBP promoter activity, and stimulated endogenous ChREBP expression. We found that the stimulatory effect of insulin on the ChREBP promoter is at least partially dependent on the presence of the POU-binding site, and that insulin treatment reduced Oct-1 expression. Our observations identify Oct-1 as a transcriptional repressor of ChREBP, and suggest that insulin stimulates ChREBP expression via attenuating the repressive effect of Oct-1.
3

Novel Regulatory Mechanisms Underlying the Expression of the Carbohydrate Response Element Binding Protein (ChREBP): the Roles of Insulin and the POU Protein Oct-1

Sirek, Adam 15 February 2010 (has links)
ChREBP has emerged as one of the key controllers of hepatic lipogenesis. While the function of ChREBP has been extensively investigated, mechanisms underlying its transcriptional regulation remain largely unknown. We located a conserved POU-binding site within mammalian ChREBP promoters, and demonstrated that the POU homeodomain protein Oct-1 binds to this site in the human HepG2 cell line. Oct-1 transfection significantly repressed ChREBP promoter activity 50-75%. Conversely, knockdown of Oct-1 expression with shRNA significantly increased ChREBP expression levels. Furthermore, insulin treatment resulted in a two-fold activation of ChREBP promoter activity, and stimulated endogenous ChREBP expression. We found that the stimulatory effect of insulin on the ChREBP promoter is at least partially dependent on the presence of the POU-binding site, and that insulin treatment reduced Oct-1 expression. Our observations identify Oct-1 as a transcriptional repressor of ChREBP, and suggest that insulin stimulates ChREBP expression via attenuating the repressive effect of Oct-1.
4

Etude des mécanismes liant l'inhibition de la lipase hormono-sensible et l'amélioration de la sensibilité à l'insuline / Improvement of insulin sensitivity through hormone-sensitive lipase inhibition : study of the mechanisms involved

Morigny, Pauline 29 September 2017 (has links)
Le développement d'une résistance à l'action de l'insuline est fréquemment observée au cours de l'obésité et est à l'origine du diabète de type 2. L'amélioration du signal insulinique au sein de la cellule adipeuse (i.e adipocyte) est une stratégie thérapeutique intéressante en vue d'améliorer la sensibilité à l'insuline systémique de patients pré-diabétiques et diabétiques. Dans cette optique, l'inhibition de la lipase hormono-sensible (LHS) adipocytaire (enzyme responsable de la libération d'acides gras par le tissu adipeux) protège de l'insulino-résistance. Les mécanismes impliqués dans l'amélioration de la sensibilité à l'insuline n'étaient cependant pas encore connus. Mon travail de thèse a donc été axé sur l'identification des mécanismes liant l'inhibition de la LHS et l'amélioration de la sensibilité à l'insuline. Dans des adipocytes humains, l'invalidation de la LHS augmente le transport du glucose, la voie de la lipogenèse de novo (synthèse d'acides gras à partir du glucose) et le signal insulinique. Parmi les enzymes lipogéniques, l'élongase des acides gras à longue chaîne ELOVL6 voit son expression très fortement induite in vitro et in vivo lors d'une déficience pour la LHS, conduisant à un enrichissement en oléate des phospholopides et des triglycérides. L'invalidation d'ELOVL6 dans des adipocytes humains a permis de démontrer le rôle clé de l'élongase dans la médiation des effets bénéfiques de l'invalidation de la LHS. In vivo, une déficience pour ELOVL6 conduit également à une détérioration du signal insulinique dans le tissu adipeux. Dans des études cliniques, l'expression d'ELOVL6 s'effondre au cours de l'insulino-résistance et est restaurée après une chirurgie bariatrique. L'enrichissement en oléate dans les phospholipides par ELOVL6 est responsable des effets protecteurs de l'inhibition de la LHS sur le signal insulinique. Des adipocytes surexprimant ELOVL6 présentent d'ailleurs une augmentation de la fluidité membranaire associée à une amélioration du signal insulinique. Dans le foie, ELOVL6 est une cible du facteur de transcription ChREBP. ChREBP adipocytaire, notamment l'isoforme ChREBPß, a récemment été mis en évidence pour son rôle déterminant sur la sensibilité à l'insuline systémique. Chez l'Homme, nous avons observé in vitro et in vivo d'étroites corrélations positives entre les expressions adipocytaires de ChREBPß et d'ELOVL6. L'inhibition simultanée de la LHS et ChREBP réduit fortement l'expression d'ELOVL6 et annule l'enrichissement en oléate des phospholipides ainsi que l'amélioration du signal insulinique. De manière particulièrement intéressante, nous avons mis en évidence qu'une interaction physique entre la LHS et ChREBP inhibe la translocation nucléaire du facteur et son activité transcriptionnelle. L'activité catalytique de la LHS n'est pas requise pour assurer l'interaction. Nous avons aussi montré que cette interaction est spécifique de la LHS et est restreinte à l'adipocyte. En conclusion, notre travail a mis au jour une nouvelle voie déterminante pour la sensibilité à l'insuline adipocytaire, liant la LHS au facteur de transcription ChREBP et à sa cible, l'élongase des acides gras ELOVL6. L'enrichissement consécutif en oléate des phospholipides conduit à une augmentation de la fluidité membranaire et à une amélioration du signal insulinique. L'inhibition de l'interaction entre la LHS et ChREBP dans le tissu adipeux pourrait donc être bénéfique dans la prise en charge de l'insulino-résistance associée à l'obésité. / Insulin resistance is a feature frequently associated to obesity and an early defect in the development of type 2 diabetes. Improvement of fat cell insulin signaling may favor recovery of whole body systemic insulin sensitivity in pre-diabetic and diabetic states. In this context, inhibition of hormone-sensitive lipase (HSL) in adipocytes (an enzyme responsible for fatty acid release by adipose tissue) was demonstrated to be protective against insulin resistance. However, the mechanisms remained unclear. Consequently, my PhD work aimed at understanding the mechanisms linking HSL inhibition and improvement of insulin sensitivity. In human adipocytes, HSL gene silencing increased glucose transport, de novo lipogenesis and insulin signaling. Among de novo lipogenesis enzymes, ELOVL6 was preferentially induced in vitro and in vivo during HSL partial deficiency, resulting in enrichment of phospholipids and triglycerides in oleic acid. ELOVL6 gene silencing in human adipocytes provided the direct demonstration of the role of the enzyme in the beneficial effect of HSL inhibition. Fat cell insulin signaling was also impaired in adipose tissue of Elovl6 null mice. In clinical studies, ELOVL6 expression was blunted in insulin resistant states and restored after bariatric surgery. ELOVL6-mediated oleic acid enrichment of phospholipids was responsible for the positive effect of HSL inhibition on insulin signaling. FRAP studies revealed an increase in plasma membrane fluidity and insulin signaling in adipocytes overexpressing ELOVL6. In the liver, ELOVL6 is a target of ChREBP. Adipose ChREBP, notably the constitutively active isoform ChREBPß, recently emerged as a major determinant of systemic insulin action on glucose metabolism. In humans, we observed in several in vitro models and in vivo studies a strong positive association between adipose ChREBPß and ELOVL6. Dual HSL-ChREBP inhibition blunted adipose ELOVL6 expression in vivo and in vitro and mirrored ELOVL6 gene silencing on fatty acid profile and insulin signaling. Importantly, we found that physical interaction between HSL and ChREBP impairs ChREBP translocation into the nucleus and its transcriptional activity. A naturally short form of HSL devoid of catalytic activity retained the capacity to bind ChREBP. We also demonstrated that ChREBP-HSL interaction was specific of the lipase and restricted to adipocyte. To conclude, our work identifies a novel pathway critical for optimal insulin signaling in fat cells which links the neutral lipase HSL to the glucose-responsive transcription factor ChREBP and its target gene, the fatty acid elongase, ELOVL6. ELOVL6-mediated oleate enrichment in phospholipids increases membrane fluidity and improves insulin signaling. Inhibition of HSL/ChREBP interaction in adipose tissue may be beneficial in the treatment of obesity-associated insulin resistance.
5

Hepatic Nutrient and Hormonal Regulation of the PANcreatic-DERived Factor (PANDER) Promoter

Ratliff, Whitney 16 November 2015 (has links)
PANcreatic-DERived factor (PANDER, FAM3B) has been shown to regulate glycemic levels via interactions with both pancreatic islets and the liver. Although PANDER is predominantly expressed from the endocrine pancreas, recent work has provided sufficient evidence that the liver may also be an additional tissue source of PANDER production. At physiological levels, PANDER is capable of disrupting insulin signaling and promoting increased hepatic glucose production. As shown in some animal models, strong expression of PANDER, induced by viral delivery within the liver, induces hepatic steatosis. However, no studies to date have explicitly characterized the transcriptional regulation of PANDER from the liver. Therefore, our investigation elucidated the nutrient and hormonal regulation of the hepatic PANDER promoter. Initial RNA-ligated rapid amplification of cDNA ends identified a novel transcription start site (TSS) approximately 26 bp upstream of the PANDER translational start codon not previously revealed in pancreatic β-cell lines. Western evaluation of various murine tissues demonstrated robust expression in the liver and brain. Promoter analysis identified strong tissue-specific activity of the PANDER promoter in both human and murine liver-derived cell lines. The minimal element responsible for maximal promoter activity within hepatic cell lines was located between -293 to -3 of the identified TSS. PANDER promoter activity was inhibited by both insulin and palmitate, whereas glucose strongly increased expression. The minimal element was responsible for maximal glucose-responsive and basal activity. Co-transfection reporter assays, chromatin-immunoprecipitation (ChIP) and site-directed mutagenesis revealed that the carbohydrate-responsive element binding protein (ChREBP) increased PANDER promoter activity and interacted with the PANDER promoter. E-box 3 was shown to be critical for basal and glucose responsive expression. In summary, in-vitro and in-vivo glucose is a potent stimulator of the PANDER promoter within the liver and this response may be facilitated by ChREBP.
6

Etude de rôle du récepteur Farnesoid X Receptor (FXR) dans le contrôle de l’utilisation du glucose / Study of the role of Farnesoid X Receptor (FXR) on the control of glucose utilization

Huaman Samanez, Carolina 07 February 2012 (has links)
La dérégulation du métabolisme glucidique conduisant au développement d’une hyperglycémie est classiquement associée aux maladies métaboliques, telles que le diabète de type 2 et l’obésité. Le foie est un organe clé dans le contrôle de l’homéostasie glucidique. Ainsi, lors d’un état post-prandial (après un repas), il utilise le glucose pour produire de l’énergie par la voie de la glycolyse, mais surtout stocke l’excès de glucose sous forme de glycogène par la voie de synthèse du glycogène et l’excès d’énergie sous forme d’acides gras par la voie de la lipogenèse. Ces voies sont sous le contrôle des hormones insuline et glucagon qui, en fonction des changements nutritionnels, régulent respectivement l’utilisation (glycolyse) et la production (néoglucogenèse) de glucose en induisant l’expression des enzymes de ces voies métaboliques. Plus récemment, il a été montré que les voies de la glycolyse et de la lipogenèse sont également régulées par le glucose qui active le facteur de transcription ChREBP (Carbohydrate Response Element Binding Protein) et induit de ce fait l’expression des gènes de la glycolyse, tels que la LPK (Liver Pyruvate Kinase), et de la lipogenèse, tels que FAS (Fatty Acid Synthase) et ACC1 (Acetyl-CoenzymeA Carboxylase 1). Le récepteur nucléaire Farnesoid X Receptor (FXR), un facteur de transcription activé par des ligands, en plus de son rôle très important dans la régulation des acides biliaires et des lipides, contrôle aussi le métabolisme glucidique dans le foie. Ainsi, FXR inhibe l’expression des gènes des voies de la glycolyse et de la lipogenèse, probablement en interférant avec le facteur de transcription ChREBP, comme le propose une étude récente. Les objectifs de ma thèse ont été de caractériser deux lignées hépatocytaires humaines IHH (Immortalized Human Hepatocytes) et HepaRG d’un point de vue métabolique et d’étudier les mécanismes moléculaires d’interférence du récepteur nucléaire FXR avec l’activité du facteur ChREBP dans ces deux lignées. / Glucose metabolism dysreglation leads to the developpment of hyperglaecemia and is classically associated with metabolic diseases such as Type II diabetes or obesity. The liver is a key organ in the control of glucose homeostasis. Indeed, at a post-prandial state (after a meal), it utilizes glucose to produce energy by the glycolysis pathway, but mostly stores the glucose excess as glycogen by the glycogenesis pathway and the energie excess as fatty acids by the lipogenesis pathway. These pathways are controlled by insulin and glucagon hormones which, in response ton nutritional changes, regulate respectively the utilization (glycolysis) and the production (gluconeogenesis) of glucose by inducing the expression of enzymes involved in these pathways. More recently, it has been shown that glycolyisis and lipogenesis are also regulated by glucose who activates the transcription factor ChREBP (Carbohydrate Response Element Binding Protein) and therefore induces the expression of glycolytic genes, such as LPK (Liver Pyruvate Kinase) and lipogenic genes, such as FAS (Fatty Acid Synthase) and ACC1 (Acetyl-CoenzymeA Carboxylase 1). Nuclear receptor Farnesoid X Receptor, a transcription factor activated by ligands, besides its role in the regulation of bile acids and lipids, also controls the glucose metabolism in liver. Thus, FXR inhibit the expression of genes involved in glycolysis and lipogenesis, probably by interfering with the transcription factor ChREBP, as it has been suggested by a recent study The objectifs of my thesis were to characterize two human hepatocyte cell lines IHH ( (Immortalized Human Hepatocytes) and HepaRG from a metabolic point of view and to study the molecular mecanisms involved in the interference of FXR with the activity of ChREBP in these two cell lines.
7

The Lipid Handling Capacity of Subcutaneous Fat Requires mTORC2 during Development

Hsiao, Wen-Yu 30 June 2020 (has links)
Overweight and obesity are associated with Type 2 Diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictorexpress mature adipocyte markers but develop a striking lipid storage defect. In vivo,this results in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARgand ChREBP. These include genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, the gene encoding its substrate and insulin effector. Finally, we reveal a potential novel mTORC2 target, ACSS2, which might control intracellular acetyl-CoA availability and regulate metabolic gene expression by altering histone modification in white adipocytes. Exploring this pathway may uncover strategies to promote safe lipid storage and improve insulin sensitivity.

Page generated in 0.0241 seconds