• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 12
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Catalytic Consequences of Active Site Speciation, Density, Mobility and Stability on Selective Catalytic Reduction of NO<sub>x</sub> with Ammonia over Cu-Exchanged Zeolites

Ishant Khurana (7307489) 16 October 2019 (has links)
<p>Selective catalytic reduction (SCR) of NO<sub>x </sub>using NH<sub>3 </sub>as a reductant (4NH<sub>3</sub>+ 4NO + O<sub>2</sub> 6H<sub>2</sub>O + 4N<sub>2</sub>) over Cu-SSZ-13 zeolites is a commercial technology used to meet emissions targets in lean-burn and diesel engine exhaust. Optimization of catalyst design parameters to improve catalyst reactivity and stability against deactivation (hydrothermal and sulfur poisoning) necessitates detailed molecular level understanding of structurally different active Cu sites and the reaction mechanism. With the help of synthetic, titrimetric, spectroscopic, kinetic and computational techniques, we established new molecular level details regarding 1) active Cu site speciation in monomeric and dimeric complexes in Cu-SSZ-13, 2) elementary steps in the catalytic reaction mechanism, 3) and deactivation mechanisms upon hydrothermal treatment and sulfur poisoning.</p><p>We have demonstrated that Cu in Cu-SSZ-13 speciates as two distinct isolated sites, nominally divalent Cu<sup>II </sup>and monovalent [Cu<sup>II</sup>(OH)]<sup>+ </sup>complexes exchanged at paired Al and isolated Al sites, respectively. This Cu site model accurately described a wide range of zeolite chemical composition, as evidenced by spectroscopic (Infrared and X-ray absorption) and titrimetric characterization of Cu sites under <i>ex situ </i>conditions and <i>in situ </i>and <i>operando </i>SCR reaction conditions. Monovalent [Cu<sup>II</sup>(OH)]<sup>+ </sup>complexes have been further found to condense to form multinuclear Cu-oxo complexes upon high temperature oxidative treatment, which have been characterized using UV-visible spectroscopy, CO-temperature programmed reduction and dry NO oxidation as a probe reaction. Structurally different isolated Cu sites have different susceptibilities to H<sub>2 </sub>and He reductions, but are similarly susceptible to NO+NH<sub>3 </sub>reduction and have been found to catalyze NO<sub>x </sub>SCR reaction at similar turnover rates (per Cu<sup>II</sup>; 473 K) via a Cu<sup>II</sup>/Cu<sup>I </sup>redox cycle, as their structurally different identities are masked by NH<sub>3 </sub>solvation during reaction. </p><p><br></p><p>Molecular level insights on the low temperature Cu<sup>II</sup>/Cu<sup>I </sup>redox mechanism have been obtained using experiments performed <i>in situ</i>and <i>in operando </i>coupled with<i></i>theory. Evidence has been provided to show that the Cu<sup>II</sup> to Cu<sup>I </sup>reduction half-cycle involves single-site Cu reduction of isolated Cu<sup>II </sup>sites with NO+NH<sub>3</sub>, which is independent of Cu spatial density. In contrast, the Cu<sup>I</sup> to Cu<sup>II </sup>oxidation half-cycle involves dual-site Cu oxidation with O<sub>2 </sub>to form dimeric Cu-oxo complexes, which is dependent on Cu spatial density. Such dual-site oxidation during the SCR Cu<sup>II</sup>/Cu<sup>I </sup>redox cycle requires two Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2</sub>sites, which is enabled by NH<sub>3</sub>solvation that confers mobility to isolated Cu<sup>I </sup>sites and allows reactions between two Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2 </sub>species and O<sub>2</sub>. As a result, standard SCR rates depend on Cu proximity in Cu-SSZ-13 zeolites when Cu<sup>I </sup>oxidation steps are kinetically relevant. Additional unresolved pieces of mechanism have been investigated, such as the reactivity of Cu dimers, the types of reaction intermediates involved, and the debated role of Brønsted acid sites in the SCR cycle, to postulate a detailed reaction mechanism. A strategy has been discussed to operate either in oxidation or reduction-limited kinetic regimes, to extract oxidation and reduction rate constants, and better interpret the kinetic differences among Cu-SSZ-13 catalysts.</p><p><br></p><p>The stability of active Cu sites upon sulfur oxide poisoning has been assessed by exposing model Cu-zeolite samples to dry SO<sub>2 </sub>and O<sub>2 </sub>streams at 473 and 673 K, and then analyzing the surface intermediates formed via spectroscopic and kinetic assessments. Model Cu-SSZ-13 zeolites were synthesized to contain distinct Cu active site types, predominantly either divalent Cu<sup>II </sup>ions exchanged at proximal framework Al (Z<sub>2</sub>Cu), or monovalent [Cu<sup>II</sup>OH]<sup>+ </sup>complexes exchanged at isolated framework Al (ZCuOH). SCR turnover rates (473 K, per Cu) decreased linearly with increasing S content to undetectable values at equimolar S:Cu ratios, consistent with poisoning of each Cu site with one SO<sub>2</sub>-derived intermediate. Cu and S K-edge X-ray absorption spectroscopy and density functional theory calculations were used to identify the structures and binding energies of different SO<sub>2</sub>-derived intermediates at Z<sub>2</sub>Cu and ZCuOH sites, revealing that bisulfates are particularly low in energy, and residual Brønsted protons are liberated at Z<sub>2</sub>Cu sites as bisulfates are formed. Molecular dynamics simulations also show that Cu sites bound to one HSO<sub>4</sub><sup>- </sup>are immobile, but become liberated from the framework and more mobile when bound to two HSO<sub>4</sub><sup>-</sup>. These findings indicate that Z<sub>2</sub>Cu sites are more resistant to SO<sub>2</sub>poisoning than ZCuOH sites, and are easier to regenerate once poisoned.</p><p><br></p><p>The stability of active Cu sites on various small-pore Cu-zeolites during hydrothermal deactivation (high temperature steaming conditions) has also been assessed by probing the structural and kinetic changes to active Cu sites. Three small-pore, eight-membered ring (8-MR) zeolites of different cage-based topology (CHA, AEI, RTH) have been investigated. With the help of UV-visible spectroscopy to probe the Cu structure, in conjunction with measuring differential reaction kinetics before and after subsequent treatments, it has been suggested that the RTH framework imposes internal transport restrictions, effectively functioning as a 1-D framework during SCR catalysis. Hydrothermal aging of Cu-RTH results in complete deactivation and undetectable SCR rates, despite no changes in long-range structure or micropore volume after hydrothermal aging treatments and subsequent SCR exposure, highlighting beneficial properties conferred by double six-membered ring (D6R) composite building units. Exposure aging conditions and SCR reactants resulted in deleterious structural changes to Cu sites, likely reflecting the formation of inactive copper-aluminate domains. Therefore, the viability of Cu-zeolites for practical low temperature NO<sub>x </sub>SCR catalysis cannot be inferred solely from assessments of framework structural integrity after aging treatments, but also require Cu active site and kinetic characterization after aged zeolites are exposed to low temperature SCR conditions.</p>
12

Ab initio design of efficient zeolite catalysts for methanol and hydrocarbons conversion

Ferri Vicedo, Pau 22 May 2023 (has links)
[ES] Toda esta disertación ha utilizado la química computacional como herramienta fundamental para el análisis científico. Por ello, en el Capítulo 2 se explican los modelos y métodos teóricos sobre este tema. La primera parte del capítulo se centra en los fundamentos de la química cuántica y, en concreto, se explica con detalle la Teoría del Funcional de la Densidad la cual constituye la base de los métodos computacionales aplicados. En esta sección, las nociones básicas del método Hartree-Fock sirven de prólogo a la DFT. El Capítulo 3 presenta los primeros resultados de este trabajo correspondientes a la reacción de metanol a olefinas catalizada por diferentes zeolitas con cavidades de poro pequeño. Esta reacción es un proceso industrial relevante que produce olefinas de cadena corta como eteno (C2=), propeno (C3=) y buteno (C4=) a escala industrial a partir de la biomasa. El sistema catalítico comprende tanto la estructura inorgánica de la zeolita que contiene los sitios ácidos Brønsted como las especies orgánicas confinadas, que forman la "hydrocarbon pool" y producen olefinas ligeras mediante pasos sucesivos de metilación y craqueo. Hemos centrado nuestros esfuerzos en comprender la naturaleza de la "hydrocarbon pool", una molécula de benceno polimetilada, y sus mecanismos de reacción para poder discernir entre ellos e identificar los catalizadores adecuados para mejorar la producción de propeno o eteno en función de la topología de cada cavidad zeolitica. Hemos podido identificar el grado de metilación de la "hydrocarbon pool" como el factor clave para potenciar el mecanismo de la ruta "paring", donde el propeno es el producto mayoritario, o el mecanismo de la ruta "side-chain", siendo el eteno el producto predominante. Este hallazgo nos permite establecer una relación entre la estabilización de los dos intermedios clave y la selectividad experimental observada con un alto grado de correlación. En el Capitulo 4 presentamos una nueva herramienta para el estudio de reacciones competitivas catalizadas por zeolitas. Utilizando un cribado computacional rápido con "force fields" para los intermedios clave de la reacción y un detallado estudio mecanístico usando la teoría del funcional de la densidad somos capaces de reconocer y cuantificar sutiles diferencias en la estabilización de intermedios y estados de transición dentro de huecos microporosos similares, aproximándonos así al nivel de reconocimiento molecular de las enzimas. Con estas herramientas somos capaces de seleccionar como catalizador una zeolita que obstaculice el mecanismo "alkyl-transfer" reduciendo la producción de eteno no deseado y potenciando al mismo tiempo el mecanismo "diaryl-mediated pathway". También somos capaces de obstaculizar la desproporción de dietilbenceno, una ruta no deseada del mecanismo "diaryl-mediated pathway" que conduce a la producción de trietilbenceno, mientras que se favorece la transalquilación de dietilbenceno aumentando el rendimiento obtenido de etilbenceno. en la primera sección del Capítulo 5, estudiamos la afinidad energética de cationes alquilamonio comercialmente disponibles con ligeras diferencias en sus grupos alquilo, TEA, MTEA y DMDEA, para la síntesis de CHA y sus efectos sobre la calidad del material obtenido. Evaluamos las energías de interacción entre la zeolita y el catión de diferentes combinaciones de agentes directores y cationes Na+ con métodos DFT periódicos pudiendo distinguir pequeños efectos de estabilización causados por ligeras diferencias estructurales entre moléculas que repercuten en la estructura final sintetizada. Durante la segunda sección del Capítulo 5, identificamos las características estructurales de diferentes agentes directores de estructura para la síntesis de AEI que mejoran las probabilidades de dispersión del Al en posiciones tetraédricas distintas de T1 obteniendo un catalizador AEI diferente de los sintetizados clásicamente. / [CA] Tota aquesta dissertació utilitza la química computacional com eina fonamental per a l'anàlisi científica. Per això, en el Capítol 2 s'expliquen els models i mètodes teòrics sobre aquest tema. La primera part del capítol es centra en els fonaments de la química quàntica i, en concret, s'explica amb detall la Teoria del Funcional de la Densitat la qual constitueix la base dels mètodes computacionals aplicats. En aquesta secció, les nocions bàsiques del mètode Hartree-Fock serveixen de pròleg a la DFT. El Capítol 3 presenta els primers resultats d'aquest treball corresponents a la reacció de metanol a olefines catalitzada per diferents zeolites amb cavitats de porus petit. Aquesta reacció és un procés industrial rellevant que produeix olefines de cadena curta com etè (C2=), propè (C3=) i butè (C4=) a escala industrial a partir de la biomassa. El sistema catalític comprèn tant l'estructura inorgànica de la zeolita que conté els llocs àcids Brønsted com les espècies orgàniques confinades, que formen la "hydrocarbon pool" i produeixen olefines lleugeres mitjançant passos successius de metilació i craqueig. Hem centrat els nostres esforços en comprendre la naturalesa de la "hydrocarbon pool", una molècula de benzè polimetilada, i els seus mecanismes de reacció per a poder discernir entre ells i identificar els catalitzadors adequats per millorar la producció de propè o etè en funció de la topologia de cada cavitat zeolitica. Hem pogut identificar el grau de metilació de la "hydrocarbon pool" com el factor clau per a potenciar el mecanisme de la ruta "paring", on el propè és el producte majoritari, o el mecanisme de la ruta "side-chain", sent l'etè el producte predominant. Al Capítol 4 presentem una nova eina per a l'estudi de reaccions competitives catalitzades per zeolites. Utilitzant un cribratge computacional ràpid amb "force fields" per als intermedis clau de la reacció i un detallat estudi mecanístic amb la teoria del funcional de la densitat som capaços de reconèixer i quantificar subtils diferències en l'estabilització d'intermedis i estats de transició dins de buits microporosos similars, aproximant-nos així al nivell de reconeixement molecular dels enzims. en la primera secció del Capítol 5, estudiem l'afinitat energètica de cations alquilamoni comercialment disponibles amb lleugeres diferències als seus grups alquil, TEA, MTEA i DMDEA, per a la síntesi de CHA i els seus efectes sobre la qualitat del material obtingut. Avaluem les energies d'interacció entre la zeolita i el catió entre diferents combinacions d'agents directors i cations Na+ amb mètodes DFT periòdics podent distingir petits efectes d'estabilització causats per lleugeres diferències estructurals entre molècules que repercuteixen en l'estructura final sintetitzada. Durant la segona secció del Capítol 5, identifiquem les característiques estructurals de diferents agents directors d'estructura per a la síntesi d'AEI que milloren les probabilitats de propagació de l'Al a través de posicions tetrahedriques diferents de T1 obtenint un catalitzador AEI diferent dels sintetitzats clàssicament. / [EN] Computational chemistry has been used as the fundamental tool during the whole work. Therefore, the theoretical models and methods on this subject are explained in Chapter 2. The first part sketches the fundamentals of quantum chemistry and specifically explains the Density Functional Theory that constitutes the basis of the computational methods applied. In this section, basic notions of the Hartree-Fock method serve as prologue for DFT after which more practical aspects are elucidated. Chapter 3 presents the first results of this work corresponding to the methanol to olefins reaction catalysed by different small-pore cage-like zeolites. This reaction is a relevant process that produces short chain olefins such as ethene, propene and butene at industrial scale from biomass. The catalytic system comprises both the zeolite inorganic framework containing the Brønsted acid sites and the confined organic species, that form the hydrocarbon pool and produce light olefins by successive methylation and cracking steps. Our efforts are focused on understanding the nature of the hydrocarbon pool, a polymethylated benzene molecule, and its reaction mechanisms in order to be able to discern between them and identify the proper catalysts to enhance propene or ethene production based on each zeolite cavity topology. We have been able to identify the hydrocarbon pool methylation degree as the key factor to enhance paring route mechanism where propene is the predominant product, or side-chain mechanism, with ethene being the predominant product. This finding enables us to establish a relation between the stabilization of the two key intermediates and the experimental selectivity observed with a high degree of correlation. In Chapter 4 we present a new tool for the study of competing reactions catalyzed by zeolites. Using a fast computational screening with force fields for the key intermediates of the reaction and a detailed density functional theory mechanistic study we are able to recognize and quantify subtle differences in the stabilization of intermediates and transition states within similar microporous voids, thus approaching the level of molecular recognition of enzymes. With these tools we are able to select a zeolite catalyst that hinders alkyl-transfer mechanism reducing the production of non-desired ethene while enhancing the diaryl-mediated pathyways mechanism. Once we discard the non-desired mechanism, we are also able to hinder the diethylbenzene disproportionation, a non-desired route of the diaryl-mediated pathways that leads to triethylbenzene production, while favouring diethylbenzene transalkylation increasing the obtained yield of ethylbenzene. To close this chapter, the theoretical results are compared with experimental selectivities obtained for eight candidate zeolites obtaining a good correlation between theory and experiment. in the first section of Chapter 5, we study the energetic affinity of commercially available alkylammonium cations with slight differences on their alkyl chain groups, as TEA, MTEA and DMDEA, for CHA synthesis and its effects on the quality of the material obtained. We evaluate the host-guest interaction energies of different combinations of OSDAs and Na+ cations with periodic DFT methods being able to distinguish small stabilization effects caused by slight structural differences between molecules that have an impact on the final structure synthesized. On the other hand, we present a new theoretical methodology to address Al positioning prediction in SSZ-39 zeolite with the AEI framework. During the second section of Chapter 5, we identify the structural features of different OSDAs for AEI synthesis that improve the probabilities of spreading Al through different T-site positions other than T1 obtaining an AEI catalyst different from the classically synthesized. / Vull agrair al Instituto de Tecnología Química per la concessió d’un contracte predoctoral, a la Red Española de Supercomputación (RES), al Centre de Càlcul de la Universitat de València, al Flemish Supercomputer Center (VSC) de la Ghent University pels recursos computacionals i el suport tècnic, a la Unió Europea i al Gobierno de España pel finançament d’aquest projecte a traves dels programes ERC-AdG-2014- 671093 (SynCatMatch) “Severo Ochoa” (SEV-2016-0683, MINECO) i dels projectes MAT2017-82288-C2-1-P i PID2020-112590GB-C21 (AEI/FEDER, UE), i al CSIC pel finançament de la estada al CMM a través del projecte i- Link (LINKA20381). / Ferri Vicedo, P. (2023). Ab initio design of efficient zeolite catalysts for methanol and hydrocarbons conversion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193493

Page generated in 0.0206 seconds