Spelling suggestions: "subject:"chabazite"" "subject:"chabazites""
1 |
Heteroatom-substituted aluminophosphatesWyles, Joanna Kay January 2000 (has links)
No description available.
|
2 |
Catalytic cracking and upgrading of oilsands bitumen using natural calcium chabaziteChristopher, Street Unknown Date
No description available.
|
3 |
Mathematical model of arsenic adsorption in a modified zeolite / Microfiltration SystemBeamguard, Miles B 01 June 2006 (has links)
Carcinogenic health concerns over arsenic in drinking water caused the USEPA to reduce the maximum contaminant level (MCL) from 50 to 10 ppb, effective on January 23, 2006. This has forced many smaller utilities into expensive treatment or discontinuation of water distribution. Researchers throughout the world are working to develop an inexpensive method for arsenic removal to meet this MCL. Aluminum silicates, or zeolites, are naturally occurring ionic sorbents. Modification of a zeolite may enhance adsorption capacities and ion selectivity. This research investigates the arsenic adsorption capacities of a modified Chabazite. This adsorption, coupled with a hollow fiber, microfiltration membrane substrate, allows for the use of finer zeolite particles. Powdered zeolite creates a cake layer on the filtration surface through which the arsenic solution must filter.
The research goal was to develop an overall mathematical model for the adsorption of arsenic through the adsorption equilibrium isotherms, the cake layer, and the microfiltration operational settings. Baseline adsorption isotherms where performed in distilled water. Solutions containing counter ions were then used to determine any counter-effects. The final isotherms were found using dechlorinated tap water, which is similar to many groundwaters found in the United States. Various runs were used to determine the most efficient modification and loading rate.Initial characterization of the membrane system defined membrane permeability and inherent arsenic rejection. Variable mass loading in both deadend and crossflow filtration determined that the cake layer was not compressible due to linear pressure increases. This process also determined the maximum cake layer permissible hydraulically on the membrane surface.
Membrane system operational characteristics and arsenic dosing were chosen to adhere to these parameters as well as the adsorption isotherms. Adsorption runs were conducted which varied the flux through the membrane, the arsenic feed concentration, and the cake layer thickness. Through the data collected, a mathematical model based on irreversible adsorption was developed. This novel approach to arsenic removal and the predictive mathematical model can be used as an effective method for removal of aqueous arsenic, and may provide small water utilities with a cost effective way to meet the recommended new MCL.
|
4 |
SYNTHETIC METHODS TO CONTROL ALUMINUM PROXIMITY IN CHABAZITE ZEOLITES AND CONSEQUENCES FOR ACID AND REDOX CATALYSISJohn R. Di Iorio (5929640) 16 January 2020 (has links)
<p>Zeolites
contain distinct Brønsted acid site (H<sup>+</sup>) ensembles that arise from
differences in the arrangement of framework Al atoms (Al−O(−Si−O)x−Al) between
isolated (x ≥3) and paired (x=1,2) configurations, the latter defined by their
ability to exchange certain divalent cations (e.g., Cu<sup>2+</sup>, Co<sup>2+</sup>).
Manipulation of the synthesis conditions used to prepare MFI zeolites has been
proposed to influence the proximity of framework Al atoms, but in a manner that
is neither determined randomly nor by any simple predictive rules. Moreover, the
effects of proton proximity have been studied for hydrocarbon catalysis in MFI
zeolites, but interpretations of catalytic phenomena are convoluted by effects
of the distribution of framework Al atoms among different crystallographic
tetrahedral sites (T-sites) and diverse pore environments (i.e., confining
environments) present in MFI. This work instead focuses on the chabazite (CHA)
framework, which contains a single crystallographically-distinct lattice
tetrahedral site (T-site) that allows clarifying how synthesis conditions
influence Al proximity, and in turn, how H<sup>+</sup> site proximity
influences catalysis independent of T-site location. </p>
<p> Selective quantification of the
number and type of H<sup>+</sup> site ensembles present in a given zeolite
allows for more rigorous normalization of reaction rates by the number of active
sites, but also for probing the number and identity of active sites on
bifunctional catalysts that contain mixtures of Brønsted and Lewis acid sites. Gaseous
NH<sub>3</sub> titrations can be used to count the total number of protons on small-pore
CHA zeolites, which are inaccessible to larger amine titrants (e.g., pyridine,
alkylamines), and can be used to quantify the exchange stoichiometry of extraframework
metal cations (e.g., Cu<sup>2+</sup>, [CuOH]<sup>+</sup>) that are stabilized at
different framework Al arrangements. Additionally, paired Al sites in CHA zeolites
can be titrated selectively by divalent Co<sup>2+</sup> cations, whose sole
presence is validated by measuring UV-Visible spectra, counting residual
protons after Co<sup>2+</sup> exchange, and titration of paired Al with other
divalent cations (e.g., Cu<sup>2+</sup>). These different titration procedures
enabled reliable and reproducible quantification of different Al arrangements,
and recognition of the effects of different synthetic methods on the resulting arrangement
of framework Al atoms in CHA zeolites. </p>
<p>Upon
the advent of this suite of characterization and titration tools, different
synthetic methods were developed to crystallize CHA zeolites at constant
composition (e.g., Si/Al = 15) but with systematic variation in their paired Al
content. The substitution of N,N,N-trimethyl-1-adamantylammonium (TMAda<sup>+</sup>)
cations for Na<sup>+</sup> in the synthesis media (Na<sup>+</sup>/TMAda<sup>+</sup><2),
while holding all other synthetic variables constant, resulted in CHA zeolites
of similar composition (Si/Al = 15) and organic content (ca. 1 TMAda<sup>+</sup>
per cage), but with percentages of paired Al (0-44%) that increased with the
total amount of sodium retained on the zeolite product. This result suggests
that sodium atoms are occluded near the ammonium group of TMAda<sup>+</sup> leading
to the formation of a paired Al site. Replacement of Na<sup>+</sup> by other
alkali cations in the synthesis media allowed for the crystallization of CHA (Si/Al
= 15) at higher ratios of alkali to TMAda<sup>+ </sup>than accessible by Na<sup>+</sup>,
likely due to the ability of different alkali cations to favor (or inhibit)
crystallization of other zeolite phases. Incorporation of different alkali
cations during CHA crystallization influences the formation of paired Al sites
in different ways, likely reflecting the nature of different alkali to
preferentially occupy different positions within the CHA framework. <i>Ab initio</i> molecular dynamics simulations
were used to assess the stability of various Al-Al arrangements in the presence
of combinations of alkali and TMAda<sup>+</sup> cations, and provide
thermodynamic insight into electrostatic interactions between cationic
structure-directing agents that stabilize paired Al sites in CHA. </p>
<p> Using these synthetic procedures to
prepare CHA zeolites of similar composition, but with varied arrangements of
framework Al, the catalytic consequences of framework Al arrangement were
investigated using acid and redox catalysis. The low-temperature (473 K) selective
catalytic reduction of NOx with NH<sub>3</sub> (NH<sub>3</sub>-SCR) was
investigated over Cu-exchanged CHA zeolites containing various Al arrangements.
Cu cations exchange as both divalent Cu<sup>2+</sup> and monovalent [CuOH]<sup>+</sup>
complexes, which exchange at paired and isolated Al sites, respectively, and
turnover with similar SCR rates (473 K). <i>In
situ</i> and <i>operando</i> X-ray
absorption spectroscopy (XAS) were used to monitor the oxidation state and
coordination environment of Cu as a function of time and environmental
conditions. Rationalization of these experimental observations by first-principles
thermodynamics and <i>ab initio</i>
molecular dynamics simulations revealed that both Cu<sup>2+</sup> and [CuOH]<sup>+</sup>
complexes are solvated by NH<sub>3</sub> and undergo reduction to Cu<sup>+</sup>
upon oxidation of NO with NH<sub>3</sub>. Cu<sup>+</sup> cations become mobilized
by coordination with NH<sub>3</sub> under reaction conditions (473 K,
equimolar NO and NH<sub>3</sub> feed), and activate O<sub>2</sub> through a
dicopper complex formed dynamically during reaction. These results implicate
the spatial density of nominally site-isolated Cu cations and, in turn, the
arrangement of anionic framework Al atoms that anchor such cationic Cu
complexes, influence the kinetics of O<sub>2</sub> activation in selective
oxidation reactions, manifested as SCR rates (per 1000 A<sup>3</sup>) that
depend quadratically on Cu density (per 1000 A<sup>3</sup>) and become
rate-limiting processes in practice at low temperatures.</p>
<p>Furthermore,
first-order and zero-order rate constants (415 K, per H<sup>+</sup>) of
methanol dehydration, a probe reaction of acid strength and confinement effects
in solid Brønsted acids, are nearly one order of magnitude larger on paired
than on isolated protons in CHA zeolites, reflecting differences in prevalent
mechanisms and apparent enthalpic and entropic barriers at these different
active site ensembles. Yet, these differences in rate constants and activation
parameters at isolated and paired protons do not persist within larger pore
zeolites (e.g., MFI). <i>In situ </i>IR
spectra measured during steady-state methanol dehydration catalysis (415 K,
0.05-22 kPa CH<sub>3</sub>OH) reveal that surface methoxy species are present
in CHA zeolites containing paired protons, but not in CHA zeolites containing
only isolated protons or MFI zeolites, providing evidence that sequential dehydration
pathways via methoxy intermediates become accessible on paired protons in CHA.
Density functional theory is used to provide atomistic detail of confined
intermediates and transition states at isolated and paired protons in CHA and
MFI zeolites, indicating that paired protons in CHA preferentially stabilize
dehydration transition states that are partially-confined within the 8-membered
ring (8-MR) of CHA. These findings provide evidence that catalytic diversity
for the same stoichiometric reaction among zeolites of fixed structure and
composition, even for frameworks containing a single T-site, can be introduced
deliberately through synthetic control of the atomic arrangement of matter. </p>
|
5 |
Teoretická studie vlivu defektů silanolového hnízda na hydrolýzu zeolitu chabazitu / Theoretical Study of Influence of Silanol Nest Defects on Hydrolysis of Zeolite ChabaziteVacek, Jaroslav January 2020 (has links)
This thesis is focused on theoretical study of influence of the silanol nest defects on the hydrolysis of zeolite Chabazite under harsh steaming conditions. The motivation of the thesis was a recent experiment proving that the silanol nest defect enhances the hydrolysis of a zeolite. The harsh steaming conditions have been chosen as some important technological processes involving zeolites require high temperatures and have water vapour present. The study was performed by using density functional theory calculations. To investigate the influence of the defect two models were used a reference pristine model and a defected model containing the silanol nest defect. The two models were pure siliceous Chabazite periodical models with supercell containing 36 and 35 Si tetrahedra respectively. A multi-step hydrolysis leading to detachment of a Si(OH)4 cluster from the zeolite, known as total desilication, was calculated for the two models. Multiple possible paths of the hydrolysis were discovered, compared and discussed on both models. Both the most favourable hydrolysis paths of the two model as well as their arithmetic means were compared. The experimentally set expectations that a silanol nest defect enhances the hydrolysis of the zeolite have been met.
|
6 |
The Motions of Guest Water Molecules and Cations in ChabaziteChanajaree, Rungroj 25 May 2011 (has links) (PDF)
The translational self-diffusion, the librations, and the reorientational motions of guest water molecules in the zeolite chabazite are examined by Molecular Dynamics (MD) computer simulations at different temperatures and loadings, including at room temperature, at which the experiments are carried out. Satisfactory agreement is found between the computed and measured translational self-diffusion coefficients. It is, however, furthermore found that the way in which the long-range electrostatic interactions are computed has an effect on the self-diffusion at high loadings and temperatures. The spectral densities of the librational motions of water are found to be similar to those in aqueous salt solutions. The reorientations of the water molecules, on the other hand, are much slower than in the liquids, and very anisotropic. The vector in direction of the molecular dipole moment reorients only very slowly, at the time scale of the simulations, due to the attraction to the almost immobile Ca++-ions and the walls of the zeolite. The other two vectors seem to undergo jump-reorientations rather than reorientations by a diffusion process. Hyper dynamics boost potential method has been applied to the MD simulations to estimate the self-diffusion coefficients of Ca++ ions in dehydrated chabazite. Because of our system is very complicated, the self-diffusion of Ca++ ions can only be roughly estimated. The Ca++ ions diffusion is small enough to confirm that the cation motion can be neglected in the normal MD simulation.
|
7 |
Nanosized Cu-SSZ-13 and Its Application in NH3-SCRPalˇci´c, Ana, Bruzzese, Paolo Cleto, Pyra, Kamila, Bertmer, Marko, Góra-Marek, Kinga, Poppitz, David, Pöppl, Andreas, Gläser, Roger, Jabło´nska, Magdalena 17 April 2023 (has links)
Nanosized SSZ-13 was synthesized hydrothermally by applying N,N,N-trimethyl-1-adamantammonium hydroxide (TMAdaOH) as a structure-directing agent. In the next step, the quantity of TMAdaOH in the initial synthesis mixture of SSZ-13 was reduced by half. Furthermore, we varied the sodium hydroxide concentration. After ion-exchange with copper ions (Cu2+ and Cu+), the Cu-SSZ-13 catalysts were characterized to explore their framework composition (XRD, solid-state NMR, ICP-OES), texture (N2-sorption, SEM) and acid/redox properties (FT-IR, TPR-H2, DR UV-Vis, EPR). Finally, the materials were tested in the selective catalytic reduction of NOx with ammonia (NH3-SCR). The main difference between the Cu-SSZ-13 catalysts was the number of Cu2+ in the double six-membered ring (6MRs). Such copper species contribute to a high NH3-SCR activity. Nevertheless, all materials show comparable activity in NH3-SCR up to 350 °C. Above 350 °C, NO conversion decreased for Cu-SSZ-13(2–4) due to side reaction of NH3 oxidation.
|
8 |
The Motions of Guest Water Molecules and Cations in ChabaziteChanajaree, Rungroj 19 May 2011 (has links)
The translational self-diffusion, the librations, and the reorientational motions of guest water molecules in the zeolite chabazite are examined by Molecular Dynamics (MD) computer simulations at different temperatures and loadings, including at room temperature, at which the experiments are carried out. Satisfactory agreement is found between the computed and measured translational self-diffusion coefficients. It is, however, furthermore found that the way in which the long-range electrostatic interactions are computed has an effect on the self-diffusion at high loadings and temperatures. The spectral densities of the librational motions of water are found to be similar to those in aqueous salt solutions. The reorientations of the water molecules, on the other hand, are much slower than in the liquids, and very anisotropic. The vector in direction of the molecular dipole moment reorients only very slowly, at the time scale of the simulations, due to the attraction to the almost immobile Ca++-ions and the walls of the zeolite. The other two vectors seem to undergo jump-reorientations rather than reorientations by a diffusion process. Hyper dynamics boost potential method has been applied to the MD simulations to estimate the self-diffusion coefficients of Ca++ ions in dehydrated chabazite. Because of our system is very complicated, the self-diffusion of Ca++ ions can only be roughly estimated. The Ca++ ions diffusion is small enough to confirm that the cation motion can be neglected in the normal MD simulation.
|
9 |
Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional TheoryMillan Cabrera, Reisel 19 February 2021 (has links)
[ES] En este trabajo estudiamos dos reacciones catalíticas relevantes para la industria y la localización del anión fluoruro en la zeolita RTH, sintetizada en medio fluoruro. El capítulo 3 es el primer capítulo de resultados, donde se estudia la reducción quimioselectiva del nitroestireno en las superficies Ni(111), Co(111), Cu(111) y Pd(111). El mecanismo generalmente aceptado de esta reacción está basado en el esquema propuesto por Haber en 1898, en el que la reacción puede transcurrir por dos rutas, la directa y la de condensación. En este capítulo exploramos ambas rutas, y observamos que la ruptura de los enlaces N-O y la consecuente formación de enlaces metal-O está más favorecida que la formación de enlaces N-H en las superficies Ni(111) y Co(111), debido al carácter oxofílico de ambos metales. Las etapas más lentas involucran la formación de enlaces N-H. En las superficies de metales nobles como Pt(111) y Pd(111) se observa el comportamiento contrario. La superficie Cu(111) es un caso intermedio comparado con los metales nobles y no nobles. Además, el nitroestireno interactúa con los átomos de Cu de la superficie solo a través de grupo nitro, con lo cual es un candidato ideal para alcanzar selectividades cerca del 100%. Sin embargo, la superficie Cu(111) no es capaz de activar la molécula de H2. En este sentido, proponemos un catalizador bimetálico basado en Cu, dopado con otro metal capaz de activar al H2, tales como el Pd o el Ni.
En los capítulos 4 y 5 se ha estudiado la reducción catalítica selectiva de los óxidos de nitrógeno (SCR, en inglés) con amoníaco. Usando métodos de DFT, hemos encontrado rutas para la oxidación de NO a NO2, nitritos y nitratos con energías de activación relativamente bajas. También, hemos encontrado que la reducción de Cu2+ a Cu+ requiere la participación simultánea de NO y NH3. Posteriormente, hemos estudiado la influencia del NH3 en este sistema con métodos de dinámica molecular. El NH3 interacciona fuertemente con el Cu+ de forma que dos moléculas de este gas son suficientes para romper la coordinación del catión Cu+ con los oxígenos del anillo 6r, y formar el complejo lineal [Cu(NH3)2]+. Además, los cationes Cu2+ pueden ser estabilizados fuera de la red mediante la formación del complejo tetraamincobre(II). Debido a la presencia de los cationes Cu+ y Cu2+ coordinados a la red de la zeolita, aparecen bandas en la región entre 800-1000 cm-1 del espectro infrarrojo. El análisis de las frecuencias IR de varios modelos con Cu+ y Cu2+ coordinados al anillo 6r, o formando complejos con amoniaco indica que cuando los cationes Cu+ y Cu2+ están coordinados a los oxígenos del anillo 6r aparecen vibraciones entre 830 y 960 cm-1. Frecuencias en esta zona también se obtienen en los casos en que NO, NO2, O2 y combinaciones de dos de ellos están adsorbidos en Cu+ y Cu2+. Sin embargo, cuando los cationes Cu+ y Cu2+ están fuera del anillo (no hay enlaces entre los cationes de cobre y los oxígenos del anillo 6r) no se obtienen vibraciones de IR en esta región del espectro. Estos resultados indican que con el seguimiento del espectro IR durante la reacción SCR es posible determinar si los cationes Cu+ y Cu2+ están coordinados o no al anillo de 6r en las etapas de oxidación y reducción.
Por último, hemos simulado el desplazamiento químico de 19F, δiso,, en la zeolita sintetizada RTH. El análisis del δiso de los distintos modelos utilizados nos ha permitido reconocer la simetría del material sintetizado, el cual pertenece al grupo espacial P1 y la nueva celda unidad ha sido confirmada experimentalmente por difracción de rayos X. Finalmente, hemos asignado la señal experimental que aparece en el espectro de 19F a -67.2_ppm, al F- localizado en un sitio T2, el cual es a su vez la posición más estable. Además, la señal a -71.8 ppm se ha asignado al anión F- localizado en un sitio T4. / [CA] En aquest treball estudiem dues reaccions catalítiques rellevants per a la indústria i la localització de l'anió fluorur en la zeolita RTH, sintetitzada al mig fluorur. El capítol 3 és el primer capítol de resultats, on s'estudia la reducció quimioselectiva del nitroestireno en les superfícies Ni(111), Co(111), Cu(111) i Pd(111). El mecanisme generalment acceptat d'aquesta reacció està basat en l'esquema proposat per Haver-hi en 1898, en el qual la reacció pot transcórrer per dues rutes, la directa i la de condensació. En aquest capítol explorem totes dues rutes, i observem que la ruptura dels enllaços N-O i la conseqüent formació d'enllaços metall-O està més afavorida que la formació d'enllaços N-H en les superfícies Ni(111) i Co(111), a causa del caràcter oxofílico de tots dos metalls. Les etapes més lentes involucren la formació d'enllaços N-H. En les superfícies de metalls nobles com Pt(111) i Pd(111) s'observa el comportament contrari. La superfície Cu(111) és un cas intermedi comparat amb els metalls nobles i no nobles. A més, el nitroestireno interactua amb els àtoms de Cu de la superfície sol a través de grup nitre, amb la qual cosa és un candidat ideal per a aconseguir selectivitats prop del 100%. No obstant això, la superfície Cu(111) no és capaç d'activar la molècula d'H2. En aquest sentit, proposem un catalitzador bimetàl·lic basat en Cu, dopat amb un altre metall capaç d'activar a l'H2, com ara el Pd o el Ni.
En els capítols 4 i 5 hem estudiat la reducció catalítica selectiva dels òxids de nitrogen (SCR, en anglés) amb amoníac. Usant mètodes de DFT, hem trobat rutes per a l'oxidació de NO a NO2, nitrits i nitrats amb energies d'activació relativament baixes. També, hem trobat que la reducció de Cu2+ a Cu+ requereix la participació simultània de NO i NH3. Posteriorment, hem estudiat la influència del NH3 en aquest sistema amb mètodes de dinàmica molecular. El NH3 interacciona fortament amb el Cu+ de manera que dues molècules d'aquest gas són suficients per a trencar la coordinació del catió Cu+ amb els oxígens de l'anell 6r, i formar el complex lineal [Cu(NH3)2]+. A més, els cations Cu2+ poden ser estabilitzats fora de la xarxa mitjançant la formació del complex tetraamincobre(II). A causa de la presència dels cations Cu+ i Cu2+ coordinats a la xarxa de la zeolita, apareixen bandes a la regió entre 800-1000 cm-1 de l'espectre infraroig. L'anàlisi de les freqüències IR de diversos models amb Cu+ i Cu2+ coordinats a l'anell 6r, o formant complexos amb amoníac indica que quan els cations Cu+ i Cu2+ estan coordinats als oxígens de l'anell 6r apareixen vibracions entre 830 i 960 cm-1. Freqüències en aquesta zona també s'obtenen en els casos en què NO, NO2, O2 i combinacions de dues d'ells estan adsorbidos en Cu+ i Cu2+. No obstant això, quan els cations Cu+ i Cu2+ estan fora de l'anell (no hi ha enllaços entre els cations de coure i els oxígens de l'anell 6r) no s'obtenen vibracions d'IR en aquesta regió de l'espectre. Aquests resultats indiquen que amb el seguiment de l'espectre IR durant la reacció SCR és possible determinar si els cations Cu+ i Cu2+ estan coordinats o no a l'anell de 6r en les etapes d'oxidació i reducció.
Finalment, hem simulat el desplaçament químic de 19F, δiso, en la zeolita sintetitzada RTH. L'anàlisi del δiso dels diferents models utilitzats ens ha permés reconéixer la simetria del material sintetitzat, el qual pertany al grup espacial P1 i la nova cel·la unitat ha sigut confirmada experimentalment per difracció de raigs X. Finalment, hem assignat el senyal experimental que apareix en l'espectre de 19F a -67.2 ppm, al F- localitzat en un lloc T2, el qual és al seu torn la posició més estable. A més, el senyal a -71.8 ppm s'ha assignat a l'anió F- localitzat en un lloc T4. / [EN] In this work, we have studied two heterogeneous catalytic reactions and the localization of the fluoride anion in the as-made RTH framework, synthesized in fluoride medium. The first results, included in chapter 3, correspond to the chemoselective reduction of nitrostyrene on different metal surfaces, i.e, Ni(111), Co(111), Cu(111) and Pd(111). Until very recently, the reduction of the nitro group was explained on the basis of the general mechanism proposed by Haber in 1898 where the reaction can follow two routes, the direct and condensation route. We have explored the relevant elementary steps of both routes and found that because of the oxophilic nature of Ni and Co, the steps involving the dissociation of N-O bonds and formation of metal-O bonds are significantly favored compared with the other steps on both metal surfaces. In addition, the most demanding steps in terms of energy involve the formation of N-H bonds. These findings are in contrast to those of noble metals such as Pt and Pd, where the opposite behavior is observed. The behavior of Cu(111) lies in between the aforementioned cases, and also no chemical bonds between the carbon atoms of the aromatic ring of nitrostyrene and the Cu(111) surface is formed. For this reason, it might be an ideal candidate to achieve nearly 100 % selectivity. However, the Cu(111) surface does not seem to activate the H2 molecule. In this regard, we propose a bimetallic Cu-based catalyst whose surface is doped with atoms of a H2-activating metal, such as Ni or Pd.
On another matter, we have also investigated the selective catalytic reduction of nitrogen oxides (SCR-NOx) and the main results are presented in the following two chapters, 4 and 5. By using static DFT methods, we found pathways for the oxidation of NO to NO2, nitrites and nitrates with relatively low activation energies. We also found, in agreement with experimental reports, that the reduction of Cu2+ to Cu+ requires the simultaneous participation of NO and NH3. Later, molecular dynamics simulations allowed us to assess the influence of NH3. The strong interaction of NH3 with the Cu+ cation is evidenced by its ability to detach Cu+ from the zeolite framework and form the mobile linear complex [Cu(NH3)2]+. Cu+ is no longer coordinated to the zeolite framework in the presence of two NH3 molecules. This observation and the fact that the T-O-T vibrations of the framework produce bands in the 800-1000 cm-1 region of the IR spectrum when perturbed by the coordination of Cu+ and Cu2+ cations, indicate that bands in the 800-1000 cm-1 regions should be observed when both copper cations are bonded to the framework oxygens.
Finally, we have also studied NMR properties of the as-made pure silica RTH framework, aiming at locating the compensating fluoride anion. The calculation of the 19F chemical shift in different T sites and comparison with the experimental NMR spectra shows that the as-made RTH belongs to the P-1 space group with 16 Si, 32 O atoms, one fluoride anion and one OSDA cation. These results have been confirmed experimentally by XRD. In addition, we have assigned the experimental signal of 19F at -67.2 ppm to the fluoride anion in a T2 site, which in turn is the most stable location found, and the signal of -71.8 ppm to a fluoride anion sitting in a T4 site. / My acknowledgements to “La Caixa foundation” for the financial support through “La Caixa−Severo Ochoa” International PhD Fellowships (call 2015), to the Spanish Supercomputing Network (RES), to the Centre de Càlcul de la Universitat de València, to the Flemish Supercomputer Center (VSC) of Ghent University for the computational resources and technical support, and to the Spanish Government through the MAT2017-82288-C2-1-P programme / Millan Cabrera, R. (2021). Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161934
|
10 |
Synthesis and Characterization of Copper-Exchanged Zeolite Catalysts and Kinetic Studies on NOx Selective Catalytic Reduction with AmmoniaArthur J. Shih (5930264) 16 January 2019 (has links)
<p>Although Cu-SSZ-13 zeolites are used commercially
in diesel engine exhaust after-treatment for abatement of toxic NO<sub>x</sub>
pollutants via selective catalytic reduction (SCR) with NH<sub>3</sub>,
molecular details of its active centers and mechanistic details of the redox
reactions they catalyze, specifically of the Cu(I) to Cu(II) oxidation
half-reaction, are not well understood. A detailed understanding of the SCR
reaction mechanism and nature of the Cu active site would provide insight into
their catalytic performance and guidance on synthesizing materials with
improved low temperature (< 473 K) reactivity and stability against
deactivation (e.g. hydrothermal, sulfur oxides). We use computational,
titration, spectroscopic, and kinetic techniques to elucidate (1) the presence
of two types of Cu<sup>2+</sup> ions in Cu-SSZ-13 materials, (2) molecular
details on how these Cu cations, facilitated by NH<sub>3</sub> solvation,
undergo a reduction-oxidation catalytic cycle, and (3) that sulfur oxides
poison the two different types of Cu<sup>2+</sup> ions to different extents at
via different mechanisms. </p><p><br></p>
<p> </p>
<p>Copper was exchanged onto H-SSZ-13 samples with
different Si:Al ratios (4.5, 15, and 25) via liquid-phase ion exchange using
Cu(NO<sub>3</sub>)<sub>2</sub> as the precursor. The speciation of copper
started from the most stable Cu<sup>2+</sup> coordinated to two anionic sites
on the zeolite framework to [CuOH]<sup>+</sup> coordinated to only one anionic
site on the zeolite framework with increasing Cu:Al ratios. The number of Cu<sup>2+</sup>
and [CuOH]<sup>+</sup> sites was quantified by selective NH<sub>3</sub>
titration of the number of residual Brønsted acid sites after Cu exchange, and by
quantification of Brønsted acidic Si(OH)Al and CuOH stretching vibrations from
IR spectra. Cu-SSZ-13 with similar Cu densities and anionic framework site
densities exhibit similar standard SCR rates, apparent activation energies, and
orders regardless of the fraction of Z<sub>2</sub>Cu and ZCuOH sites,
indicating that both sites are equally active within measurable error for SCR. </p><p><br></p>
<p> </p>
<p>The standard SCR reaction uses O<sub>2</sub> as the
oxidant (4NH<sub>3</sub> + 4NO + O<sub>2</sub> -> 6H<sub>2</sub>O + 4N<sub>2</sub>)
and involves a Cu(I)/Cu(II) redox cycle, with Cu(II) reduction mediated by NO
and NH<sub>3</sub>, and Cu(I) oxidation mediated by NO and O<sub>2</sub>. In
contrast, the fast SCR reaction (4NH<sub>3</sub> + 2NO + 2NO<sub>2</sub> -> 6H<sub>2</sub>O
+ 4N<sub>2</sub>) uses NO<sub>2</sub> as the oxidant. Low temperature (437 K)
standard SCR reaction kinetics over Cu-SSZ-13 zeolites depend on the spatial
density and distribution of Cu ions, varied by changing the Cu:Al and Si:Al
ratio. Facilitated by NH<sub>3</sub> solvation, mobile Cu(I) complexes can
dimerize with other Cu(I) complexes within diffusion distances to activate O<sub>2</sub>,
as demonstrated through X-ray absorption spectroscopy and density functional
theory calculations. Monte Carlo simulations are used to define average Cu-Cu
distances. In contrast with O<sub>2</sub>-assisted oxidation reactions, NO<sub>2</sub>
oxidizes single Cu(I) complexes with similar kinetics among samples of varying
Cu spatial density. These findings demonstrate that low temperature standard
SCR is dependent on Cu spatial density and requires NH<sub>3</sub> solvation to
mobilize Cu(I) sites to activate O<sub>2</sub>, while in contrast fast SCR uses
NO<sub>2</sub> to oxidize single Cu(I) sites. </p><p><br></p>
<p> </p>
<p>We also studied the effect of sulfur oxides, a
common poison in diesel exhaust, on Cu-SSZ-13 zeolites. Model Cu-SSZ-13 samples
exposed to dry SO<sub>2</sub> and O<sub>2</sub> streams at 473 and 673 K. These
Cu-SSZ-13 zeolites were synthesized and characterized to contain distinct Cu
active site types, predominantly either divalent Cu<sup>2+</sup> ions exchanged
at proximal framework Al sites (Z<sub>2</sub>Cu), or monovalent CuOH+ complexes
exchanged at isolated framework Al sites (ZCuOH). On the model Z<sub>2</sub>Cu
sample, SCR turnover rates (473 K, per Cu) catalyst decreased linearly with
increasing S content to undetectable values at equimolar S:Cu molar ratios,
while apparent activation energies remained constant at ~65 kJ mol<sup>-1</sup>,
consistent with poisoning of each Z<sub>2</sub>Cu site with one SO<sub>2</sub>-derived
intermediate. On the model ZCuOH sample, SCR turnover rates also decreased
linearly with increasing S content, yet apparent activation energies decreased
monotonically from ~50 to ~10 kJ mol<sup>-1</sup>, suggesting that multiple
phenomena are responsible for the observed poisoning behavior and consistent
with findings that SO<sub>2</sub> exposure led to additional storage of SO<sub>2</sub>-derived
intermediates on non-Cu surface sites. Changes to Cu<sup>2+</sup> charge
transfer features in UV-Visible spectra were more pronounced for SO<sub>2</sub>-poisoned
ZCuOH than Z<sub>2</sub>Cu sites, while X-ray diffraction and micropore volume
measurements show evidence of partial occlusion of microporous voids by SO<sub>2</sub>-derived
deposits, suggesting that deactivation may not only reflect Cu site poisoning.
Density functional theory calculations are used to identify the structures and
binding energies of different SO<sub>2</sub>-derived intermediates at Z<sub>2</sub>Cu
and ZCuOH sites. It is found that bisulfates are particularly low in energy,
and residual Brønsted protons are liberated as these bisulfates are formed.
These findings indicate that Z<sub>2</sub>Cu sites are more resistant to SO<sub>2</sub>
poisoning than ZCuOH sites, and are easier to regenerate once poisoned. </p>
|
Page generated in 0.0255 seconds