Spelling suggestions: "subject:"ethoxyethanol dehydration"" "subject:"ethoxyethanol rehydration""
1 |
Catalytic and kinetic study of methanol dehydration to dimethyl etherHosseininejad, Seyed Shaham Aldin Unknown Date
No description available.
|
2 |
Catalytic and kinetic study of methanol dehydration to dimethyl etherHosseininejad, Seyed Shaham Aldin 11 1900 (has links)
Dimethyl ether (DME), as a solution to environmental pollution and diminishing energy supplies, can be synthesized more efficiently, compared to conventional methods, using a catalytic distillation column for methanol dehydration to DME over an active and selective catalyst. In current work, using an autoclave batch reactor, a variety of commercial catalysts are investigated to find a proper catalyst for this reaction at 110-135 C and 900 kPa. Among the -Alumina, Zeolites (HY, HZSM-5 and HM) and ion exchange resins (Amberlyst 15, Amberlyst 35, Amberlyst 36 and Amberlyst 70), Amberlyst 35 and 36 demonstrate good activity for the studied reaction at the desired temperature and pressure. Then, the kinetics of the reaction over Amberlyst 35 is determined. The experimental data are described well by Langmuir-Hinshelwood kinetic expression, for which the surface reaction is the rate determining step. The calculated apparent activation energy for this study is 98 kJ/mol. / Chemical Engineering
|
3 |
Dimethyl Ether Synthesis Over Novel Mesoporous CatalystsTokay, Kenan Cem 01 August 2008 (has links) (PDF)
Due to overconsumption, fossil reserves are rapidly being depleted and various sources predict that they will not last until the end of 21st century. Moreover, the increase in the rate of global warming and the polluting matter emitted by the vehicles consuming fossil fuels has increased the search for renewable and clean energy sources. Alcohols and ethers, which contain fewer pollutants and have better burning properties, are commonly thought among clean fuel alternatives. Among the potential clean energy sources, dimethyl-ether is already in use in the automotive industries of many countries such as China and Japan, due to its low NOx and CO2 emissions, high cetane rating and efficient combustion characteristics, especially in diesel engines.
In this work, dimethyl-ether synthesis is achieved using methanol dehydration reaction over solid acid catalysts. For this purpose, three different mesoporous MCM-41 type aluminum silicates have been synthesized with direct hydrothermal synthesis method and aluminum is added to the synthesized SBA-15 catalyst using impregnation method. Apart from the catalysts synthesized, different commercial catalysts such as aluminum oxide in different forms (& / #945 / and & / #947 / ), Nafion NR-50 and Nafion SAC-13 have also been tested in this reaction. These materials were characterized by methods such as XRD, EDS, SEM, and N2 physical adsorption and DRIFTS were also investigated in terms of paramters such as the conversion of methanol to products, selectivity and yield.
The analyses have shown that AlSi1 is the most active of all the aluminum silicates synthesized in both 0.136 and 0.27 s.g/cm3 space times, with up to 80% methanol conversion in all temperatures tested. AlSi1 also has low by-product formation and similar to other aluminum silicates, its dimethyl-ether selectivity approaches 1 at 4000C. Among all synthesized catalysts, the dimethyl-ether yield was seen to be the highest for Al-SBA-15, which approaches 0.5 at 4000C for both space times. For all aluminum silicates synthesized, about 40% dimethyl-ether yield was obtained at the same temperature and space times. Among the aluminum oxides, & / #945 / -alumina was seen to be superior to others in & / #947 / forms in terms of conversion selectivity and yield, especially at low temperatures. As to Nafion catalysts, due to its much higher surface area and high Bronsted acidity, Nafion SAC-13 has shown higher activity compared to Nafion NR-50 for all temperatures and space times tested.
|
4 |
Nanocomposite Nafion And Heteropolyacid Incorporated Mesoporous Catalysts For Dimethyl Ether Synthesis From MethanolCiftci, Aysegul 01 August 2009 (has links) (PDF)
The need for alternative transportation fuels is rising with the rapid depletion of oil reserves and the simultaneous growth of the world& / #8217 / s population. Production of dimethyl ether, a non-petroleum derived attractive fuel-alternate for the future, is a challenging research area. Different routes and various solid-acid catalysts are being developed in order to achieve the most efficient way of synthesizing this potential diesel alternative fuel. The focus of heterogeneous catalysis is to convert renewable feed stocks to valuable chemicals. Nafion resin and heteropolyacid compounds are active acidic catalysts with significantly low surface areas, which act as a strong barrier limiting their catalytic activity. Synthesizing solid-acid catalysts by incorporation of nonporous active compounds into mesoporous silicate structured materials opens a door to producing valuable chemicals by heterogeneous catalysis.
The objective of this work was to synthesize and characterize nafion and heteropolyacid incorporated nanocomposite catalysts and to catalyze DME synthesis
by dehydration of methanol at different temperatures. The interactions of methanol and DME with these catalysts were also investigated by in situ FT-IR.
Silicotungstic acid (STA)/Silica and Tungstophosphoric acid (TPA)/Silica catalysts were synthesized by following a one-pot hydrothermal route. These mesoporous catalysts had surface area values of 143-252 m2/g. The STA/SiO2 nanocomposite catalyst having a W/Si atomic ratio of 0.33 showed the highest activity, with a DME selectivity approaching to 100% and a methanol conversion of 60% at 250° / C at a space time of 0.27 s.g.cm-3. Effects of W/Si atomic ratio and the synthesis procedure on the performance of these novel materials were investigated.
Nanocomposite Nafion/SiO2 solid-acid catalysts having high surface area values (595-792 m2/g) and narrow pore size distributions (4.3 nm) were successfully synthesized by a one-pot hydrothermal procedure. Effects of the modifications in the synthesis procedure concerning the surfactant removal, nafion loading, etc. were investigated based on the characterization results and activity tests. Nafion was observed to be uniformly distributed within these mesoporous catalysts. Nafion resin was also impregnated into aluminosilicate and & / #945 / -alumina, but one-pot synthesis was concluded to be better for obtaining well dispersed, nafion incorporated active catalysts. The Nafion/Silica catalyst synthesized by a nafion/silica weight ratio of 0.15 and washed with 2M sulfuric acid-ethanol solution exhibited the highest activity due to its highest Brö / nsted, as well as Lewis acidity. A methanol conversion of 40% at 300° / C, 0.27 s.g.cm-3 and DME selectivity values approaching to 100% over 180° / C were very promising for the synthesis of this green fuel alternate over the new catalysts synthesized.
|
5 |
Dimethyl Ether (dme) Synthesis Using Mesoporous Sapo-34 Like Catalytic MaterialsDemir, Hakan 01 August 2011 (has links) (PDF)
In 21st century, researchers make great effort of finding a clean transportation fuel to
diminish the severe effects of conventional transportation fuel combustion such as global
warming and air pollution. Dimethyl ether is considered as a strong fuel alternative due to its
good burning characteristics and environmentally friendly properties. In order to produce
dimethyl ether, different synthesis routes and solid acid catalysts are being utilized. SAPO-34 is
an aluminophosphate based catalyst having moderate acidity. This property makes it a good
candidate for the synthesis of dimethyl ether. However, SAPO-34 has microporous structure
causing diffusion limitations.
The objective of this study is to synthesize, characterize mesoporous SAPO-34 like
catalytic materials and test the activity of them in methanol dehydration reaction. The benefit of
obtaining mesoporous structure is that the diffusion limitations can be eliminated.
Mesoporous SAPO-34 like catalysts were synthesized through hydrothermal synthesis
route. BET surface areas of these catalysts were 117-133 m2/g. All methanol dehydration
reactions were carried out at a space time of 0.14 s.g/cm3. By using mesoporous SAPO-34 like
catalysts, the highest methanol conversion was 48% obtained at 550° / C with DME selectivity and
yield values of 1 and 0.49, respectively. Since utilizing microporous SAPO-34 catalyst gave
higher methanol conversion, 67%, at lower temperature, 250° / C, with dimethyl ether selectivity
of around 1, mesoporous SAPO-34 like catalysts are not suitable for this reaction.
|
6 |
Zr And Silicotungstic Acid Incorporated Silicate Structured Mesoporous Catalysts For Dimethyl Ether SynthesisOrman, Sultan 01 August 2011 (has links) (PDF)
Due to high consumption rates of petroleum derived fuels and environmental regulations, significant search has been initiated for the development of environmental friendly and efficient fuels, which were derived from more abundant feedstocks. Dimethyl ether (DME), as having a good combustion quality and high cetane number, is an efficient alternative for diesel fuel. With improved combustion quality, the emissions from DME used engines are greatly decreased. DME synthesis can be carried out via two different methods / methanol dehydration on acidic catalysis and syn-gas conversion on bifunctional catalysis.
In this study, the aim is to synthesize acidic catalysts using direct hydrothermal synthesis method for DME synthesis as using methanol as feed stock via dehydration and to characterize these materials.
The support of the synthesized materials comprises of MCM-41 structure and silicotungstic acid (STA) and metals (Zr / Ni / Cu) were incorporated into the MCM-41 structure during synthesis. Two different techniques were used to extract the surfactant (CTMABr) from catalyst matrix. First one is the conventional calcination technique (at 350° / C) and the second is supercritical fluid extraction (at various operating conditions) with methanol modified CO2. The effect of metal loading on extraction performance is analyzed through characterizations of Ni and Cu incorporated materials. In addition, The effect of operation parameters on catalyst properties are also investigated with performing extraction at different pressures for different durations. By changing the type of metal incorporated into the catalyst, the extraction performance is also monitored. The characterization results indicated that, SFE process is also a promising method for surfactant removal.
The activities of zirconium added catalysts are tested in methanol dehydration reaction towards DME. It is concluded that the conversion of methanol and selectivity of DME in presence of extracted samples are lower (maximum yield -0.54- obtained at 450° / C with sceSZ1) compared to the calcined materials (maximum yield -0.80- obtained at 300° / C with cSZ6). This result can also be foreseen by DRIFTS analysis of pyridine adsorbed samples. The acid sites of extracted materials are not as strong as in the calcined catalysts.
|
7 |
SYNTHETIC METHODS TO CONTROL ALUMINUM PROXIMITY IN CHABAZITE ZEOLITES AND CONSEQUENCES FOR ACID AND REDOX CATALYSISJohn R. Di Iorio (5929640) 16 January 2020 (has links)
<p>Zeolites
contain distinct Brønsted acid site (H<sup>+</sup>) ensembles that arise from
differences in the arrangement of framework Al atoms (Al−O(−Si−O)x−Al) between
isolated (x ≥3) and paired (x=1,2) configurations, the latter defined by their
ability to exchange certain divalent cations (e.g., Cu<sup>2+</sup>, Co<sup>2+</sup>).
Manipulation of the synthesis conditions used to prepare MFI zeolites has been
proposed to influence the proximity of framework Al atoms, but in a manner that
is neither determined randomly nor by any simple predictive rules. Moreover, the
effects of proton proximity have been studied for hydrocarbon catalysis in MFI
zeolites, but interpretations of catalytic phenomena are convoluted by effects
of the distribution of framework Al atoms among different crystallographic
tetrahedral sites (T-sites) and diverse pore environments (i.e., confining
environments) present in MFI. This work instead focuses on the chabazite (CHA)
framework, which contains a single crystallographically-distinct lattice
tetrahedral site (T-site) that allows clarifying how synthesis conditions
influence Al proximity, and in turn, how H<sup>+</sup> site proximity
influences catalysis independent of T-site location. </p>
<p> Selective quantification of the
number and type of H<sup>+</sup> site ensembles present in a given zeolite
allows for more rigorous normalization of reaction rates by the number of active
sites, but also for probing the number and identity of active sites on
bifunctional catalysts that contain mixtures of Brønsted and Lewis acid sites. Gaseous
NH<sub>3</sub> titrations can be used to count the total number of protons on small-pore
CHA zeolites, which are inaccessible to larger amine titrants (e.g., pyridine,
alkylamines), and can be used to quantify the exchange stoichiometry of extraframework
metal cations (e.g., Cu<sup>2+</sup>, [CuOH]<sup>+</sup>) that are stabilized at
different framework Al arrangements. Additionally, paired Al sites in CHA zeolites
can be titrated selectively by divalent Co<sup>2+</sup> cations, whose sole
presence is validated by measuring UV-Visible spectra, counting residual
protons after Co<sup>2+</sup> exchange, and titration of paired Al with other
divalent cations (e.g., Cu<sup>2+</sup>). These different titration procedures
enabled reliable and reproducible quantification of different Al arrangements,
and recognition of the effects of different synthetic methods on the resulting arrangement
of framework Al atoms in CHA zeolites. </p>
<p>Upon
the advent of this suite of characterization and titration tools, different
synthetic methods were developed to crystallize CHA zeolites at constant
composition (e.g., Si/Al = 15) but with systematic variation in their paired Al
content. The substitution of N,N,N-trimethyl-1-adamantylammonium (TMAda<sup>+</sup>)
cations for Na<sup>+</sup> in the synthesis media (Na<sup>+</sup>/TMAda<sup>+</sup><2),
while holding all other synthetic variables constant, resulted in CHA zeolites
of similar composition (Si/Al = 15) and organic content (ca. 1 TMAda<sup>+</sup>
per cage), but with percentages of paired Al (0-44%) that increased with the
total amount of sodium retained on the zeolite product. This result suggests
that sodium atoms are occluded near the ammonium group of TMAda<sup>+</sup> leading
to the formation of a paired Al site. Replacement of Na<sup>+</sup> by other
alkali cations in the synthesis media allowed for the crystallization of CHA (Si/Al
= 15) at higher ratios of alkali to TMAda<sup>+ </sup>than accessible by Na<sup>+</sup>,
likely due to the ability of different alkali cations to favor (or inhibit)
crystallization of other zeolite phases. Incorporation of different alkali
cations during CHA crystallization influences the formation of paired Al sites
in different ways, likely reflecting the nature of different alkali to
preferentially occupy different positions within the CHA framework. <i>Ab initio</i> molecular dynamics simulations
were used to assess the stability of various Al-Al arrangements in the presence
of combinations of alkali and TMAda<sup>+</sup> cations, and provide
thermodynamic insight into electrostatic interactions between cationic
structure-directing agents that stabilize paired Al sites in CHA. </p>
<p> Using these synthetic procedures to
prepare CHA zeolites of similar composition, but with varied arrangements of
framework Al, the catalytic consequences of framework Al arrangement were
investigated using acid and redox catalysis. The low-temperature (473 K) selective
catalytic reduction of NOx with NH<sub>3</sub> (NH<sub>3</sub>-SCR) was
investigated over Cu-exchanged CHA zeolites containing various Al arrangements.
Cu cations exchange as both divalent Cu<sup>2+</sup> and monovalent [CuOH]<sup>+</sup>
complexes, which exchange at paired and isolated Al sites, respectively, and
turnover with similar SCR rates (473 K). <i>In
situ</i> and <i>operando</i> X-ray
absorption spectroscopy (XAS) were used to monitor the oxidation state and
coordination environment of Cu as a function of time and environmental
conditions. Rationalization of these experimental observations by first-principles
thermodynamics and <i>ab initio</i>
molecular dynamics simulations revealed that both Cu<sup>2+</sup> and [CuOH]<sup>+</sup>
complexes are solvated by NH<sub>3</sub> and undergo reduction to Cu<sup>+</sup>
upon oxidation of NO with NH<sub>3</sub>. Cu<sup>+</sup> cations become mobilized
by coordination with NH<sub>3</sub> under reaction conditions (473 K,
equimolar NO and NH<sub>3</sub> feed), and activate O<sub>2</sub> through a
dicopper complex formed dynamically during reaction. These results implicate
the spatial density of nominally site-isolated Cu cations and, in turn, the
arrangement of anionic framework Al atoms that anchor such cationic Cu
complexes, influence the kinetics of O<sub>2</sub> activation in selective
oxidation reactions, manifested as SCR rates (per 1000 A<sup>3</sup>) that
depend quadratically on Cu density (per 1000 A<sup>3</sup>) and become
rate-limiting processes in practice at low temperatures.</p>
<p>Furthermore,
first-order and zero-order rate constants (415 K, per H<sup>+</sup>) of
methanol dehydration, a probe reaction of acid strength and confinement effects
in solid Brønsted acids, are nearly one order of magnitude larger on paired
than on isolated protons in CHA zeolites, reflecting differences in prevalent
mechanisms and apparent enthalpic and entropic barriers at these different
active site ensembles. Yet, these differences in rate constants and activation
parameters at isolated and paired protons do not persist within larger pore
zeolites (e.g., MFI). <i>In situ </i>IR
spectra measured during steady-state methanol dehydration catalysis (415 K,
0.05-22 kPa CH<sub>3</sub>OH) reveal that surface methoxy species are present
in CHA zeolites containing paired protons, but not in CHA zeolites containing
only isolated protons or MFI zeolites, providing evidence that sequential dehydration
pathways via methoxy intermediates become accessible on paired protons in CHA.
Density functional theory is used to provide atomistic detail of confined
intermediates and transition states at isolated and paired protons in CHA and
MFI zeolites, indicating that paired protons in CHA preferentially stabilize
dehydration transition states that are partially-confined within the 8-membered
ring (8-MR) of CHA. These findings provide evidence that catalytic diversity
for the same stoichiometric reaction among zeolites of fixed structure and
composition, even for frameworks containing a single T-site, can be introduced
deliberately through synthetic control of the atomic arrangement of matter. </p>
|
8 |
Direct dimethyl ether synthesis from CO2/H2 / Synthèse directe de diméthyle éther à partir de CO2/H2Jiang, Qian 28 February 2017 (has links)
DME est un carburant propre qui contribue à diminuer les émissions de gaz à effet de serre; il est aussi une molécule plate-forme pour le stockage d'énergie. L'objectif de la thèse est le développement de matériaux catalytiques bifonctionnels pour la synthèse directe de DME à partir de CO2/H2 à partir de Cu/ZnO/ZrO2 comme le catalyseur de la synthèse de méthanol à partir de CO2/H2 et Al-TUD-1 comme le catalyseur de déshydratation du méthanol en DME. Dans cette thèse, Al-TUD-1 a été étudiée comme un catalyseur de la déshydratation du méthanol en DME pour la première fois. Son activité en déshydratation du méthanol en DME augmente avec la diminution du rapport Si/Al. Les catalyseurs bifonctionnels ont été préparés par un procédé de dépôt par co-précipitation. Le SMSI a été démontré et était bénéfique pour la dispersion de cuivre métallique, la surface de cuivre métallique augmente avec le rapport Si/Al. Dans le même temps, on a observé le blocage des sites acides d'Al-TUD-1 par le cuivre. Afin d'exposer les sites acides d'Al-TUD-1, la méthode de « core-shell » a été adoptée pour préparer le catalyseur bifonctionnel. Elle aide à libérer la fonction acide en empêchant son blocage par le cuivre. Cette méthode de synthèse a été bénéfique pour la stabilité des particules de cuivre métalliques, mais des faibles conversions de CO2/H2 ont été observées en raison de l'inaccessibilité du noyau. Un autre catalyseur bifonctionnel a été préparé par une méthode de mélange physique pour comparaison. L'optimisation du catalyseur bifonctionnel Cu/ZnO/ZrO2@Al-TUD-1 pour la synthèse directe de DME à partir de CO2/H2 a permis d'éclairer les principaux paramètres affectant le contact intime de deux fonctions catalytiques: surface et dispersion du cuivre, les propriétés acide et basic, la présence d'eau et l'accessibilité des sites actifs pour les réactifs. / DME is a clean fuel that helps to diminish the emissions of green house gases; it is as well a platform molecule for the energy storage. The objective of the thesis is the development of bifunctional catalytic materials for the direct DME synthesis from CO2/H2 based on Cu/ZnO/ZrO2 as the methanol synthesis from CO2/H2 catalyst and Al-TUD-1 as the methanol dehydration to DME catalyst. In this thesis, Al-TUD-1 was investigated as the methanol dehydration to DME catalyst for the first time. The methanol dehydration to DME performance increases with the decrease of Si/Al ratio. The bifunctional catalysts were prepared by co-precipitation deposition method. The SMSI was demonstrated and was beneficial for the metallic copper dispersion, the metallic copper surface area increases with the Si/Al ratio. In the same time the blockage of acid sites of Al-TUD-1 by copper was observed. In order to expose the acid sites of Al-TUD-1, the core shell method was adopted to prepare the bifunctional catalyst. It helps to free the acid function preventing its blockage by copper. This method of synthesis was beneficial for the stability of metallic copper particles, but performed low conversions of CO2/H2 due to the inaccessibility of the core. Another bifunctional catalyst was prepared by physically mixing method for comparison. The optimization of the bifunctional Cu/ZnO/ZrO2@Al-TUD-1 catalyst for the direct DME synthesis from CO2/H2 allowed enlightening the main parameters that affect the intimate contact of two catalytic functions: copper surface area and dispersion, acid and basic properties, water presence and the accessibility of the active sites for the reactants.
|
Page generated in 0.0948 seconds