Spelling suggestions: "subject:"chain parameter"" "subject:"shain parameter""
1 |
High frequency model for transient analysis of transformer windings using multiconductor transmission line theoryFattal, Feras 30 March 2017 (has links)
Transients encountered by transformers in power stations during normal operation can have complex oscillatory overvoltages containing a large spectrum of frequency components. These transients can coincide with the natural frequencies of the transformers windings, leading to voltages that can be greater or more severe than the current factory proof tests. This may lead to insulation breakdown and catastrophic failures. Existing lumped parameter RLCG transformer models have been proven to be less accurate for very fast transient overvoltages (VFTO) with frequencies over 1 MHz.
A white box model for transient analysis of transformer windings has been developed
using Multiconductor Transmission Line (MTL) Theory. This model enables the simulation
of natural frequencies of the transformer windings up to frequencies of several MHz, and
can be used to compute voltages between turns by representing each turn as a separate
transmission line. Both continuous and interleaved disk windings have been modelled and a comparison and validation of the results is presented. / May 2017
|
2 |
Modelling and verification for DNA nanotechnologyDannenberg, Frits Gerrit Willem January 2016 (has links)
DNA nanotechnology is a rapidly developing field that creates nanoscale devices from DNA, which enables novel interfaces with biological material. Their therapeutic use is envisioned and applications in other areas of basic science have already been found. These devices function at physiological conditions and, owing to their molecular scale, are subject to thermal fluctuations during both preparation and operation of the device. Troubleshooting a failed device is often difficult and we develop models to characterise two separate devices: DNA walkers and DNA origami. Our framework is that of continuous-time Markov chains, abstracting away much of the underlying physics. The resulting models are coarse but enable analysis of system-level performance, such as âthe molecular computation eventually returns the correct answer with high probabilityâ. We examine the applicability of probabilistic model checking to provide guarantees on the behaviour of nanoscale devices, and to this end we develop novel model checking methodology. We model a DNA walker that autonomously navigates a series of junctions, and we derive design principles that increase the probability of correct computational output. We also develop a novel parameter synthesis method for continuous-time Markov chains, for which the synthesised models guarantee a predetermined level of performance. Finally, we develop a novel discrete stochastic assembly model of DNA origami from first principles. DNA origami is a widespread method for creating nanoscale structures from DNA. Our model qualitatively reproduces experimentally observed behaviour and using the model we are able to rationally steer the folding pathway of a novel polymorphic DNA origami tile, controlling the eventual shape.
|
Page generated in 0.0731 seconds