• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 27
  • 24
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 148
  • 54
  • 40
  • 38
  • 36
  • 26
  • 22
  • 21
  • 21
  • 20
  • 20
  • 19
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Chemical modification of nanocolumnar semiconductor electrodes for enhanced performance as lithium and sodium-ion battery anode materials

Abel, Paul Robert 24 October 2014 (has links)
Chemical Engineering / The successful commercialization of lithium-ion batteries is responsible for the ubiquity of personal electronics. The continued development of battery technology, as well as its application to new emerging markets such as electric vehicles, is dependent on developing safer, higher energy density, and cheaper electrode materials and battery chemistries. The focus of this dissertation is on identifying, characterizing and optimizing new materials for lithium- and sodium-ion batteries. Batteries are incredibly complex engineered systems with each electrode composed of conductive additive and polymeric binder in addition to the active material. All of these components must work together for the electrode system to function properly. In this work, glancing angle deposition (GLAD) and reactive ballistic deposition (RBD) are employed to grow thin films of novel materials with reproducible morphology for use as battery electrodes. The use of these thin film electrodes eliminated the need for conductive additives and polymer binders allowing for the active materials themselves to be studied rather than the whole electrode system. Two techniques are employed to modify the chemical properties of the electrode materials grown by RBD and GLAD: Alloying (Si-Ge alloys for Li-ion batteries and Sn-Ge alloys for Na-ion batteries) and partial chalcogenation (partial oxidation of silicon, and partial sulfidation and selenidation of germanium for Li-ion batteries). Both of these techniques are successfully employed to enhance the electrochemical properties of the materials presented in this dissertation. / text
32

Les propriétés photoélectroniques de vitrocéramique de chalcogénures / The photoelectronic properties of chalcogenide glass ceramic

Xu, Yang 05 September 2014 (has links)
Une nouvelle famille de vitrocéramiques, avec une microstructure inédite, a été fabriquée par une cristallisation contrôlée des verres dans le système GeSe2-Sb2Se3-CuI. L'influence de la composition et du processus de cristallisation des verres de base, sur la microstructure et sur l’intensité du photo-courant des vitrocéramiques a été étudiée. Une composition optimisée, le 40GeSe2-40Sb2Se3-20CuI, a été particulièrement étudiée avec des résultats suivants: (1) Après une étude systématique , il a été constaté que cette composition donne la plus forte intensité de photo-courant parmi tous les verres étudiés dans ce système pseudo-ternaire GeSe2-Sb2Se3-Cul. Il a été également démontré que le photo-courant généré par différentes vitrocéramiques est non seulement déterminé par la composition, mais aussi par la microstructure composite de la vitrocéramique, qui est déterminée par le processus de céramisation. Ce processus de céramisation a ensuite été optimisé. Par rapport au procédé de traitement thermique en deux étapes, le procédé en une seule étape à basse température est une stratégie plus appropriée pour obtenir une microstructure efficace, favorisant la séparation des charges, construisant des canaux conducteurs et donnant une intensité de photo-courant élevée dans la vitrocéramique. (2) La microstructure composite inédite, discutée ci-dessus est composée de micro-domaines conducteurs interconnectés, formées par des cristaux Sb2Se3 faiblement conducteur en forme de tiges, couverts par des nano-cristaux de Cu2GeSe3 beaucoup plus conducteurs. Le procédé le plus probable de la photo-génération efficace des charges est le suivant: les photons sont efficacement et essentiellement absorbés par Sb2Se3 ainsi que par Cu2GeSe3. Les hétérojonctions formées par les Sb2Se3 du type n et les Cu2GeSe3 du type p, favorisent la séparation de charges, tandis que les Cu2GeSe3 interconnectées et conductrices fournissent des canaux conducteurs et jouent ainsi le rôle de collecteur efficace de charges. Il en résulte ainsi une très longue durée de vie des porteurs de charge et un fort photo-courant. (3) La formation de nano-hétérojonctions entre les cristaux Sb2Se3 et Cu2GeSe3 dans un seul micro-domaine peut conduire à une séparation efficace des électrons et des trous photo-générés. Par conséquent, pour application photo-catalytique, il n’est pas nécessaire de former des canaux conducteurs (conducteurs interconnectés des micro-domaines) dans l'ensemble de la vitrocéramique. De plus, la formation de ces canaux conducteurs, nécessiterait une augmentation de la durée ou/et la température de recuit, pouvant conduire à une diminution de l'activité photo-catalytique à cause de la taille relativement grande des grains cristallins. Les vitrocéramiques optimisées montrent une bonne capacité de désamination oxydative et une forte activité photo-catalytique en général, démontrant ainsi son potentiel en tant que photo-catalyseur efficace. / A totally new family of glass ceramics with a unique microstructure was fabricated by controlling the crystallization of the GeSe2-Sb2Se3-CuI glass system. The influences of the material composition and the crystallizing process of the precursor glasses on the microstructure and photocurrent of the prepared glass ceramics were investigated. An optimized composition, 40GeSe2-40Sb2Se3-20CuI, was particularly studied with the following significant results: (1) After a systematic study, it was found that this particular composition shows the highest photocurrent density among all studied glasses in the pseudo-ternary GeSe2-Sb2Se3-CuI system. It is also demonstrated that the photocurrent generated by different glass ceramics is not only determined by the composition, but also by the composite microstructure of the glass ceramic, which is determined by the ceramisation process. This process was then carefully studied. Compared with the two-step heat treatment process, the single-step process at a low temperature is a more efficient strategy to build up an efficient composite microstructure, which promotes charge carrier separation and provides a conductive channel, leading to a high photocurrent intensity in the glass ceramic. (2) The above-mentioned unique composite microstructure is composed of interconnected conductive microdomains, formed by low conductive rod-like Sb2Se3 crystals, covered by relatively high conductive Cu2GeSe3 nanocrystals. The most likely process for efficient photogeneration of charges is proposed as follows: photons are efficiently and essentially absorbed by Sb2Se3 as well as by Cu2GeSe3, and then the heterojunction formed by n-type Sb2Se3 and p-type Cu2GeSe3 promotes the charge separation, whereas the oriented and relatively conductive Cu2GeSe3 aggregate provides a conductive channel and plays the role of efficient charge collector. This structure results in exceptionally long lifetime of charge carriers (around 16 µs) and high photocurrent (at least 100 times higher than any of Sb2Se3 and Cu2GeSe3 individually). (3) The formation of nano-heterojunctions between Sb2Se3 and Cu2GeSe3 crystals within a single conductive microdomain can fully lead to an efficient separation of photo-generated electrons and holes. Therefore, for the photocatalytic application, it is unnecessary to form conductive channels (interconnected conductive microdomains) in the whole glass ceramic. Moreover, in order to form conductive channels, the necessary increase of annealing time or/and temperature may decrease the photocatalytic activity due to its relatively large crystal grain size. The optimized glass ceramic exhibits a good oxidative deamination ability and high photocatalytic activity, demonstrating its potential as an efficient photocatalyst.
33

Novel diagnostic technologies for optical communication systems

Watts, Regan Trevor January 2008 (has links)
The objective of this thesis was to develop novel technologies for measuring the physical characteristics of high-speed pulse trains, for use in performance monitoring applications. This thesis describes the development of three separate techniques that perform measurements in either the time domain, frequency domain or the phase space of the optical signal. The first section investigates phase-sensitive pulse measurement techniques. A high- resolution SHG-FROG apparatus was custom-designed to measure 40GHz RZ pulse trains, from which an operational characterisation of a Mach-Zehnder modulator (MZM) was realised. A numerical model of a nonlinear pulse compressor was developed to compress 40GHz RZ pulses from 8.5ps down to 3.4ps. These pulses were time-division multiplexed to 80GHz, and phase-retrievals of the 80GHz pulse trains were measured. A comparison between the techniques of SHG-FROG and linear spectrogram has been undertaken for 10GHz pulse sources, exposing SHG-FROG's weaknesses at this particular repetition rate. The second section investigates a simple, time-averaged, nonlinear detection technique. Two-photon absorption in a GaAs/InGaAs quantum-well laser diode was used to measure the duty cycle (and by extension, the pulse duration) of a range of pulse sources. This technique was further developed to measure the extinction ratio of NRZ pulse trains. Additionally, the pulse duration of a mode-locked laser source was measured using the nonlinear absorption in a 1-m length of As2Se3 Chalcogenide glass fiber. This demonstrates that the nonlinear properties of this glass may well find application in future instrumentation. The third section investigates the development of an ultra-high resolution swept heterodyne spectrometer. This spectrometer was used to spectrally-distinguish repetitive 8-bit NRZ patterns at 2.5Gbit/s. It was also used to measure the chirp parameter of an X-cut LiNbO3 MZM, revealing a chirp parameter of απ/2 < 0.1 across a modulation band- width of 250-2500MHz. Additionally, the distinctive CW spectrum of a DFB laser diode was measured. Analysis of the measured CW spectrum yielded a linewidth enhancement factor of α≃ 1.8 and also the relative intensity noise of the DFB laser diode.
34

Photo And Thermal Induced Studies On Sb/As2S3 Multilayered And (As2S3)1-xSbx Thin Films

Naik, Ramakanta 07 1900 (has links) (PDF)
Chalcogenide glasses have attracted considerable attention due to their infrared transparency, low phonon energy, and high non linear optical properties. They have been explored as promising candidate for optical memories, gratings, switching devices etc. Because of their low phonon energy and high refractive indices, now a days these are used for high efficiency fibre amplifiers. Nevertheless, the availability of amorphous semiconductors in the form of high quality multilayers provides potential applications in the field of micro and optoelectronics. Among amorphous multilayers, chalcogenide multilayers are attractive because of the prominent photoinduced effects. Studies in chalcogenide amorphous multilayer have been directed towards two phenomena. One is photoinduced interdiffusion in short period multilayer systems which finds potential applications in holographic recording and fabrication of phase gratings . The other is photo darkening or photobleaching which is also known in thick films. These multilayers exhibit prominent photoinduced effects, similar to those exhibited by uniform thin films. In spite of its practical usefulness, the mechanism of photoinduced interdiffusion is not properly understood. Since most structural transformations are related to atomic diffusion, understanding of the structural transformation must be based on the diffusion process. The main aim of this thesis is to study the photoinduced diffusion in Sb/As2S3 multilayered films and (As2S3)1-xSbx thin films. In literature, there are reports about the photoinduced interdiffusion in Se/As2S3 and Bi/As2S3 multilayered films, but the mechanisms of photoinduced interdiffusion of these elements are not very clear. Raman scattering and infrared spectroscopy techniques have been used to study the photoinduced interdiffusion in Se/As2S3 and Bi/As2S3 multilayered films by Malyovanik et al. (M. Malyovanik, M. Shiplyak, V. Cheresnya, T. Remeta, S. Ivan, and A. Kikineshi, J. Optoelectron. Adv. Mater. 5, 397 (2003). But many questions remain unanswered. The characteristic spectra of components in the multilayer and those of the diffused layer were rather similar. In the present thesis, photoinduced interdiffusion in Sb/As2S3 multilayered samples are studied by Fourier Transform Infrared spectroscopy (FTIR) at room and low temperature and X-ray photoelectron spectroscopy (XPS). The photoinduced effects in (As2S3)1-xSbx thin films are studied by FTIR, XPS and Raman Spectroscopy. The detailed information about the distribution of electronic states in the absorption edge, localized states and the new bonds formed between the components due to photoinduced interdiffusion elucidated from the above studies will give more insight into the mechanism and kinetics of photoinduced interdiffusion. The thesis consists of seven chapters. References are given at the end of each chapter.
35

Arsenic Trisulfide on Lithium Niobate Devices for Infrared Integrated Optics

Xia, Xin 2011 May 1900 (has links)
Arsenic trisulfide (As₂S₃) waveguide devices on lithium niobate substrates (LiNbO₃) provide a set of compact and versatile means for guiding and manipulating optical modes in infrared integrated optical circuits, including the integrated trace gas detection system. As a member of the chalcogenide glass family, As₂S₃ has many properties superior to other materials, such as high transparency up to 10 [mu]m, large refractive index and high nonlinear coefficient. At the wavelength of 4.8[mu]m, low-loss As₂S₃ waveguides are achieved: The propagation loss is 0.33 dB/cm; the coupling efficiency is estimated to be 81 %; and less than 3 dB loss is measured for a 90-degree bent waveguide of 250 [mu]m bending radius. They offer an ideal solution to the optical interconnection -- the fundamental element of an optical circuit. LiNbO₃ is a birefringent crystal that has long been studied as the substrate material. Titanium diffused waveguides in lithium niobate substrate (Ti: LiNbO₃) have excellent electro-optical properties, based on which, on-chip polarization converters are demonstrated. New benefits can be obtained by integrating As₂S₃ and Ti: LiNbO₃ to form a hybrid waveguide, which benefits from the high index contrast of As₂S₃ and the electro-optical properties of Ti: LiNbO₃ as well as its easy connection with commercial single mode fibers. For hybrid waveguides, the mode coupling is key. A taper coupler is preferred owing to its simplicity in design and fabrication. Although preliminary experiments have shown the feasibility of such integration, the underlying mechanism is not well understood and guidelines for design are lacking. Therefore, a simulation method is first developed and then applied to the taper coupler design. Devices based on taper couplers are then fabricated and characterized. The study reveals that in the presence of mode beating, it is not necessarily the longer taper that is the better coupling. There exists an optimum length for a taper with fixed width variation. A two-stage taper design can largely reduce the total length, e. g. by 64%, while keeping the coupling efficiency above 90%. According to the frequency domain analysis, these practical taper couplers work for a wavelength range instead of a single wavelength.
36

Thermal And Optical Properties Of Ge-Se Glass Matrix Doped With Te, Bi And Pb

Ganesan, R 01 1900 (has links)
During the last few years the scientific interest in chalcogenides glasses has been provoked on account of their properties and new application possibilities. These materials exhibit electrical and optical properties, which make them useful for several potential applications. Specifically the threshold and memory switching behavior and the infrared transmission of many of these glasses make the materials to be well suitable for use in memory devices and in fiber optics. Multicomponent glasses have been found to be more useful for many of these applications since the properties could be tailored for the specific uses. On account of this there has been great deal of interest in recent years in understanding the composition dependent variations of physical properties in these glasses. Models based on network topology and chemical ordering have been proposed to explain the composition dependence of physical properties. The Chemically Ordered Covalent Network (COCN) model is one of the best efforts put forth in this subject. This model predicts distinctive physical properties of these glasses for compositions at which there is a maximum number of heteropolar bonds. A physical model based on changes in network topology with composition has been proposed recently. This model predicts the rigidity to percolate in the network at the mean coordination number <r> = 2.40. This critical value of <r> at which the rigidity percolates is called the mechanical threshold or the rigidity percolation threshold. One more argument based on medium range interactions, existing in these glassy networks, suggests that the mechanical threshold should occur at <r> = 2.67. A general lack of consensus in the existing experimental reports on the mechanical threshold in some chalcogenides glasses prevents one from identifying the correct threshold value of <r>. A systematic study of the composition dependence of glasses with a large glass-forming region is necessary to resolve this controversy. The correct threshold value of <r> and the reason for the departure from this value in the other cases is the first step towards verifying the applicability of this model to chalcogenide glasses. Glasses belonging to IV — V — VI groups are natural candidates for this study because of their large glass forming region. It also seems possible to isolate the chemical threshold from interfering with the mechanical threshold in some of these glasses. In device applications of any semiconductor the optical and the electrical band gaps need to be varied and this is commonly done by doping. The large density of valence alteration pairs and intrinsic disorder of amorphous semiconductors counter-balances the effects of external additives. As a result, it is hard to electrically dope these materials. Non-equilibrium experimental techniques have been used to some extent, but one of the limitations is that they are confined to the thin film state. The finding that p to n type conduction sign changes can be induced by Bi and Pb in bulk Ge-M (M= S, Se and Te) glasses has therefore created special interest. This thesis deals with Ge-Se glass matrix doped with Te, Bi and Pb. The optical, thermal and electrical properties have been studied. The present thesis work is arranged in several chapters. The basic introduction of chalcogenide glasses is given in chapter one. This includes an introduction to chalcogenide glasses followed by a brief discussion on the important structural models, the possible defects in chalcogenide glasses and the electrical, optical and thermal properties of chalcogenide glasses. The second chapter discusses the experimental techniques used in the present investigations. The basic principles and theory behind the experiments, the experimental setup and the experimental procedure leading to the determination of the physical properties are given here. These include information about Differential Scanning Calorimetry (DSC), Photo acoustic (PA) spectroscopy and Photoluminescence studies. In the third chapter the experimental investigations on Ge-Se-Te glasses are presented. The chapter starts with the preparation and characterization of these glasses. It then gives an account of the earlier studies on Ge-Se-Te glasses that are relevant to the present work. The results of the DSC and PA studies are discussed in the following two sections. In the systems with Gex Se80-x Te20 and Gex Se75.x Te25, glasses with less than 20 at. % of Ge do not show any crystallization peak due to Se rich content. But Te and Ge-rich glasses show strong crystallization tendency. The composition dependence of Tg of this glassy system gives an evidence for the occurrence of the topological threshold or mechanical threshold at <r> = 2.40 and chemical threshold at <r> = 2.67. These can be explained on the basis of COCN model. The optical band gap and thermal diffusivity studies also show anomalous behavior at <r> = 2.40 and <r> = 2.67. The experimental results on Ge-Se-Te glasses are summarized in the last section of this chapter. The investigations on Bi doped Ge-Se and Ge-Se-Te glasses are given in the fourth chapter. The chapter starts with a brief introduction of preparation, characterization and a short review of earlier work. In PA studies the anomalous behavior is observed in thermal diffusivity and thermal diffusion length plot at 8-9 at. % of Bi doping of the Ge-Se and Ge-Se-Te glasses where the conduction changes from p to n type. These results are explained on the basis of percolation model and the formation of Bi2Se3 microcrystalline phase. Finally these results are summarized at the end of the chapter. The fifth chapter is devoted to the investigations on Pb doped Ge-Se glasses. It is arranged in five sections; preparation and characterization, earlier work, Photo acoustic and Photoluminescence studies. In PA studies the composition dependence of thermal diffusivity show anomalous behavior at x =F 9 at % of Pb in Pbx Ge42-x Sesg glasses and y = 21 at. % of Ge in Pb2o Gey Seso-y glasses where the conduction changes from p to n type. After that it reaches the maximum. After the conduction sign changes the conductivity increases with addition of respective Pb and Ge concentration in both series of glasses, which is reflected in thermal diffusivity value also. The results have been explained on the basis of COCN model. From PL studies, the PL intensity is high in un-doped Ge42 Scss glasses. With the addition of Pb into Ge-Se system the PL intensity goes down drastically up to 9 at. % of Pb, beyond 9 at. % the PL intensity is approximately the same up to 15 at. %. In the last section the results are summarized. Chapter six summarizes the essential features of the work reported in the thesis. These conclusions are drawn from the present and the earlier reported studies on Ge-Se-Te glasses, Bi doped Ge-Se and Ge-Se-Te glasses and Pb doped Ge-Se glasses. Finally based on the present experimental results, some future work has been suggested which could throw some light on a better understanding of/? to n transition and defects state of these glasses. It is worth extending the microscopic phase separation studies in these glasses. Highly sensitive experimental techniques are needed in this regard. Also some simulation work like Monte-Carlo simulation and Molecular dynamics simulation needs to be undertaken for understanding the microscopic phase separation and the role of defects in carrier type reversal in these glassy materials. All the references cited in the thesis are collected and listed at the end of the thesis.
37

An Investigation of Dynamic Processes in Selenium Based Chalcogenide Glasses

Gulbiten, Ozgur January 2014 (has links)
Owing to their excellent infrared transmittance and good rheological properties, selenium based chalcogenide glasses have been materials of choice for a number of technological applications. However, chalcogenide glasses can undergo substantial structural relaxation even at room temperature due to their low glass transition temperatures. The origins of these dynamic processes and their correlation to the glass structure is therefore of fundamental and practical interest. In particular, a deep understanding of the dynamic response near the glass transition region could help elucidate the mechanism of these structural relaxation processes. The correlation between structure and dynamic properties of selenium based glass systems were therefore investigated. NMR and Raman spectroscopy measurements reveal that the structure of AsₓSe₁₋ₓ glass follow the chain crossing model in selenium-rich glasses but contain increasing amounts of cage molecules in arsenic-rich compositions. This structural pattern leads to systematic extrema in physical properties at the stoichiometric composition As₄₀Se₆₀.The dynamic response of AsₓSe₁₋ₓ glasses investigated by heat capacity spectroscopy shows two minima in melt fragility as a function of composition which correlate well with the dimensionality of the glassy network. The structure evolves from 2D to 3D during crosslinking of selenium chains by arsenic but reduces into a 2D layer-like structure at the stoichiometric composition. Upon precipitation of arsenic-rich cages the network first reverts back to 3D and eventually becomes a mix of 2D and 0D structural units. The presence of molecular clusters in the network is evidenced by a strong bimodal dynamic response at high arsenic contents. NMR and Raman spectroscopy measurements of GeₓSe₁₋ₓ glasses suggest a structure composed of aggregated tetrahedral units and long selenium chains with little or no connectivity. Distinct dynamic responses of these two separated structural motifs are revealed by heat capacity spectroscopy. A non-Gaussian distribution of the imaginary heat capacity peak provided further evidence for the structural heterogeneity. This behavior is consistent with high temperature NMR measurements which show that the dynamic response of floppy selenium chains is distinct from that of rigid tetrahedral units. Finally, heat capacity spectroscopy applied to pure selenium provides strong evidence for the microscopic origin of the non-exponential structural relaxation, a universal feature of fragile glasses. The evolution of the imaginary heat capacity peak shape during annealing shows a non-monotonic trend which remarkably matches model predictions based on the enthalpy landscape. These results indicate that the non-exponential character of the relaxation process is linked to density fluctuations in the glass.
38

Novel diagnostic technologies for optical communication systems

Watts, Regan Trevor January 2008 (has links)
The objective of this thesis was to develop novel technologies for measuring the physical characteristics of high-speed pulse trains, for use in performance monitoring applications. This thesis describes the development of three separate techniques that perform measurements in either the time domain, frequency domain or the phase space of the optical signal. The first section investigates phase-sensitive pulse measurement techniques. A high- resolution SHG-FROG apparatus was custom-designed to measure 40GHz RZ pulse trains, from which an operational characterisation of a Mach-Zehnder modulator (MZM) was realised. A numerical model of a nonlinear pulse compressor was developed to compress 40GHz RZ pulses from 8.5ps down to 3.4ps. These pulses were time-division multiplexed to 80GHz, and phase-retrievals of the 80GHz pulse trains were measured. A comparison between the techniques of SHG-FROG and linear spectrogram has been undertaken for 10GHz pulse sources, exposing SHG-FROG's weaknesses at this particular repetition rate. The second section investigates a simple, time-averaged, nonlinear detection technique. Two-photon absorption in a GaAs/InGaAs quantum-well laser diode was used to measure the duty cycle (and by extension, the pulse duration) of a range of pulse sources. This technique was further developed to measure the extinction ratio of NRZ pulse trains. Additionally, the pulse duration of a mode-locked laser source was measured using the nonlinear absorption in a 1-m length of As2Se3 Chalcogenide glass fiber. This demonstrates that the nonlinear properties of this glass may well find application in future instrumentation. The third section investigates the development of an ultra-high resolution swept heterodyne spectrometer. This spectrometer was used to spectrally-distinguish repetitive 8-bit NRZ patterns at 2.5Gbit/s. It was also used to measure the chirp parameter of an X-cut LiNbO3 MZM, revealing a chirp parameter of απ/2 < 0.1 across a modulation band- width of 250-2500MHz. Additionally, the distinctive CW spectrum of a DFB laser diode was measured. Analysis of the measured CW spectrum yielded a linewidth enhancement factor of α≃ 1.8 and also the relative intensity noise of the DFB laser diode.
39

Novel diagnostic technologies for optical communication systems

Watts, Regan Trevor January 2008 (has links)
The objective of this thesis was to develop novel technologies for measuring the physical characteristics of high-speed pulse trains, for use in performance monitoring applications. This thesis describes the development of three separate techniques that perform measurements in either the time domain, frequency domain or the phase space of the optical signal. The first section investigates phase-sensitive pulse measurement techniques. A high- resolution SHG-FROG apparatus was custom-designed to measure 40GHz RZ pulse trains, from which an operational characterisation of a Mach-Zehnder modulator (MZM) was realised. A numerical model of a nonlinear pulse compressor was developed to compress 40GHz RZ pulses from 8.5ps down to 3.4ps. These pulses were time-division multiplexed to 80GHz, and phase-retrievals of the 80GHz pulse trains were measured. A comparison between the techniques of SHG-FROG and linear spectrogram has been undertaken for 10GHz pulse sources, exposing SHG-FROG's weaknesses at this particular repetition rate. The second section investigates a simple, time-averaged, nonlinear detection technique. Two-photon absorption in a GaAs/InGaAs quantum-well laser diode was used to measure the duty cycle (and by extension, the pulse duration) of a range of pulse sources. This technique was further developed to measure the extinction ratio of NRZ pulse trains. Additionally, the pulse duration of a mode-locked laser source was measured using the nonlinear absorption in a 1-m length of As2Se3 Chalcogenide glass fiber. This demonstrates that the nonlinear properties of this glass may well find application in future instrumentation. The third section investigates the development of an ultra-high resolution swept heterodyne spectrometer. This spectrometer was used to spectrally-distinguish repetitive 8-bit NRZ patterns at 2.5Gbit/s. It was also used to measure the chirp parameter of an X-cut LiNbO3 MZM, revealing a chirp parameter of απ/2 < 0.1 across a modulation band- width of 250-2500MHz. Additionally, the distinctive CW spectrum of a DFB laser diode was measured. Analysis of the measured CW spectrum yielded a linewidth enhancement factor of α≃ 1.8 and also the relative intensity noise of the DFB laser diode.
40

Novel diagnostic technologies for optical communication systems

Watts, Regan Trevor January 2008 (has links)
The objective of this thesis was to develop novel technologies for measuring the physical characteristics of high-speed pulse trains, for use in performance monitoring applications. This thesis describes the development of three separate techniques that perform measurements in either the time domain, frequency domain or the phase space of the optical signal. The first section investigates phase-sensitive pulse measurement techniques. A high- resolution SHG-FROG apparatus was custom-designed to measure 40GHz RZ pulse trains, from which an operational characterisation of a Mach-Zehnder modulator (MZM) was realised. A numerical model of a nonlinear pulse compressor was developed to compress 40GHz RZ pulses from 8.5ps down to 3.4ps. These pulses were time-division multiplexed to 80GHz, and phase-retrievals of the 80GHz pulse trains were measured. A comparison between the techniques of SHG-FROG and linear spectrogram has been undertaken for 10GHz pulse sources, exposing SHG-FROG's weaknesses at this particular repetition rate. The second section investigates a simple, time-averaged, nonlinear detection technique. Two-photon absorption in a GaAs/InGaAs quantum-well laser diode was used to measure the duty cycle (and by extension, the pulse duration) of a range of pulse sources. This technique was further developed to measure the extinction ratio of NRZ pulse trains. Additionally, the pulse duration of a mode-locked laser source was measured using the nonlinear absorption in a 1-m length of As2Se3 Chalcogenide glass fiber. This demonstrates that the nonlinear properties of this glass may well find application in future instrumentation. The third section investigates the development of an ultra-high resolution swept heterodyne spectrometer. This spectrometer was used to spectrally-distinguish repetitive 8-bit NRZ patterns at 2.5Gbit/s. It was also used to measure the chirp parameter of an X-cut LiNbO3 MZM, revealing a chirp parameter of απ/2 < 0.1 across a modulation band- width of 250-2500MHz. Additionally, the distinctive CW spectrum of a DFB laser diode was measured. Analysis of the measured CW spectrum yielded a linewidth enhancement factor of α≃ 1.8 and also the relative intensity noise of the DFB laser diode.

Page generated in 0.2386 seconds