• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Μελέτη της δομής, του διαχωρισμού φάσης και των φωτοεπαγόμενων δομικών αλλαγών χαλκογονούχων υάλων με φασματοσκοπία Raman και ηλεκτρονική μικροσκοπία σάρωσης

Κυριαζής, Φώτης Κ. 07 September 2010 (has links)
- / -
2

Thermoelectric Propeties of Cu Based Chalcogenide Compounds

Chetty, Raju January 2014 (has links) (PDF)
Thermoelectric (TE) materials directly convert heat energy into electrical energy. The conversion efficiency of the TE devices depends on the performance of the materials. The conversion efficiency of available thermoelectric materials and devices is low. Therefore, the development of new materials for improving thermoelectric device performance is a highly essential. As the performance of the TE materials depends on TE figure of merit [zT=S2P T ] which consist of three material properties such as Seebeck coefficient (S), electrical resistivity ( ) and thermal conductivity ( ). Thermoelectric figure of merit can be improved by either increase of power factor or decreasing of thermal conductivity or by both. In the present thesis, Cu based chalcogenide compounds are chosen for the study of thermoelectric properties because of their complex crystal structure, which leads to lower values of thermal conductivity. Also, the power factor of these materials can be tuned by the partial substitution doping. In the present thesis, Cu based chalcogenide compounds quaternary chalcogenide compound (Cu2ZnSnSe4), ternary compounds (Cu2SnSe3 and Cu2GeSe3) and tetrahedrite materials (Cu12Sb4S13) have been prepared by solid state synthesis. The prepared compounds are characterized by XRD for the phase identification, Raman Spectroscopy used as complementary technique for XRD, SEM for surface morphology and EPMA for the phase purity and elemental composition analysis respectively. For the evaluation of zT, thermoelectric properties of all the samples have been studied by measuring Seebeck coefficient, resistivity and thermal diffusivity. In the chapter 1, a brief introduction about thermoelectricity and its effects is discussed. Thermoelectric materials parameters such as electrical resistivity, Seebeck coefficient and thermal conductivity for different class of materials are mentioned. The selection of thermoelectric materials and the motivation for choosing the Cu based chalcogenide compounds for thermoelectric applications are discussed. In chapter 2, the details of the experiments carried out for Cu based chalcogenide compounds are presented. In chapter 3, the effect on thermoelectric properties by the cation substitution on quaternary chalcogenide compound Cu2+xZnSn1 xSe4 (0, 0.025, 0.05, 0.075, 0.1, 0.125, and 0.15) is studied. The electrical resistivity of all the samples decreases with an increase in Cu content except for Cu21ZnSn09Se4, most likely due to a higher content of the ZnSe. All the samples showed positive Seebeck coefficients indicating that holes are the majority charge carriers. The thermal conductivity of doped samples was higher as compared to Cu2ZnSnSe4 and this may be due to the larger electronic contribution and the presence of the ZnSe phase in the doped samples. The maximum zT = 0.23 at 673 K is obtained for Cu205ZnSn095Se4. In chapter 4, the effect of multi{substitution of Cu21ZnSn1 xInxSe4 (0, 0.05, 0.075, and 0.1) on transport properties were studied. The Rietveld powder X-ray diffraction data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples con firmed the formation of a tetragonal kesterite structure. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The co-doping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper zinc and indium tin substitution. Even though, the power factors (S2 ) of indium-doped samples Cu21ZnSn1 xInxSe4 (x=0.05, 0.075) are almost the same, the maximum zT=0.45 at 773 K was obtained for Cu21Zn09Sn0925In0075Se4 due to its smaller value of thermal conductivity. In chapter 5, thermoelectric properties of Zn doped ternary compounds Cu2ZnxSn1 xSe3 (x = 0, 0.025, 0.05, 0.075) were studied. The undoped com\pound showed a monoclinic crystal structure as a major phase, while the doped compounds showed a cubic crystal structure confirmed by powder XRD (X-Ray Diffraction). The electrical resistivity decreased up to the samples with Zn content x=0.05 in Cu2ZnxSn1 xSe3, and slightly increased in the sample Cu2Zn0075Sn0925Se3 . This behavior is consistent with the changes in the carrier concentration confirmed by room temperature Hall coefficient data. Temperature dependent electrical resistivity of all samples showed heavily doped semiconductor behavior. All the samples exhibit positive Seebeck coefficient (S) and Hall coefficient indicating that the majority of the carriers are holes. A linear increase in Seebeck coefficient with increase in temperature indicates the degenerate semiconductor behavior. The total thermal conductivity of the doped samples increased with a higher amount of doping, due to the increase in the carrier contribution. The total and lattice thermal conductivity of all samples decreased with increasing of temperature, which points toward the dominance of phonon scattering at high temperatures. The maximum zT = 0.34 at 723 K is obtained for the sample Cu2SnSe3 due to a low thermal conductivity compared to the doped samples. In chapter 6, thermoelectric properties of Cu2Ge1 xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds is studied. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by indium doping. The electrical resistivity ( ) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2Ge1 xInxSe3 (x= 0, 0.1) at room temperature (RT) con rm the sign of Seebeck coefficient. The trend of as a function of doping content for the samples Cu2Ge1 xInxSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity decreases with increasing temperature, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (zT) = 0.23 at 723 K was obtained for Cu2In01Ge09Se3. In chapter 7, thermoelectric properties of Cu12 xMn1 xSb4S13 (x = 0, 0.5, 1.0, 1.5, 2.0) samples were studied. The Rietveld powder XRD pattern and Electron Probe Micro Analysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ on the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit (zT) decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum zT = 0.76 at 623 K is obtained for Cu12Sb4S13. In chapter 8, the summary and conclusion of the present work is presented.
3

Πειραματική μελέτη των δομικών και ηλεκτρονιακών ιδιοτήτων φωτοευαίσθητων χαλκογονούχων ενώσεων

Καλύβα, Μαρία 14 December 2009 (has links)
Τα άμορφα υλικά είναι μια ευρεία κατηγορία υλικών με σημαντικές ιδιότητες πολλές από τις οποίες δεν απαντώνται όταν αυτά βρίσκονται στην αντίστοιχη κρυσταλλική τους φάση. Στην παρούσα εργασία μελετώνται επιλεγμένα υμένια (πάχους ~ 1μm) από μια ειδική κατηγορία άμορφων υλικών, τις χαλκογονούχες ενώσεις (chalcogenides). Ως “χαλκογενή” (chlacogens) αναφέρονται τα στοιχεία της ομάδας VIA του περιοδικού πίνακα, δηλαδή το Θείο (S), το Σελήνιο (Se) και το Τελλούριο (Te) και συνεπώς οι ενώσεις που περιέχουν ένα ή περισσότερα από αυτά τα στοιχεία μαζί με στοιχεία όπως τα As, Ge, P, Bi, Si, Sb, Ga, Ag, κλπ. σχηματίζουν τις χαλκογονούχες ενώσεις. Το γεγονός ότι το ενεργειακό χάσμα των ενώσεων αυτό εμπίπτει στην φασματική περιοχή του ορατού φωτός και του κοντινού υπερύθρου έχει ως αποτέλεσμα την εμφάνιση πλήθους φωτο-επαγόμενων (μη-θερμικών) φαινομένων όταν τα υλικά αυτά ακτινοβοληθούν με φως κατάλληλου μήκους κύματος και πυκνότητας ισχύος. Τα φωτο-επαγόμενα φαινόμενα περιλαμβάνουν αλλαγές σε δομικές, μηχανικές, χημικές, οπτικές, ηλεκτρικές κ.α. ιδιότητες. Πιο συγκεκριμένα, μέσω της μελέτης των φωτο-επαγόμενων φαινομένων παρέχεται η δυνατότητα για ελεγχόμενη μεταβολή δομικών (μικροσκοπικών) αλλά και μακροσκοπικών ιδιοτήτων του υλικού. Επομένως τα υλικά αυτά έχουν έντονο τεχνολογικό ενδιαφέρον, σε εφαρμογές όπως στην οπτική, στην μικροηλεκτρονική και στην ανάπτυξη στοιχείων αποθήκευσης πληροφορίας (οπτικές μνήμες). Στόχος της παρούσας εργασίας είναι η μελέτη και η κατανόηση σε βασικό επίπεδο των μικρο-δομικών χαρακτηριστικών, υμενίων επιλεγμένων άμορφων χαλκογονούχων ενώσεων υπό την επίδραση διαφόρων εξωτερικών ερεθισμάτων καθώς και η επίτευξη συσχετισμού μεταξύ μικροσκοπικών χαρακτηριστικών και χρήσιμων για εφαρμογές μακροσκοπικών ιδιοτήτων. Πιο συγκεκριμένα, μελετήθηκε συστηματικά η επιφανειακή ηλεκτρονιακή δομή υμενίων του συστήματος AsxSe100-x, παρασκευασμένων με θερμική εναπόθεση (thermal evaporation, TE) και εναπόθεση με παλμικό laser (pulsed laser deposition, PLD) με επιφανειακά ευαίσθητες τεχνικές όπως Φασματοσκοπία Φωτοηλεκτρονίων από Ακτίνες-x (XPS) και από Υπεριώδες (UPS). H Φασματοσκοπία Φωτοηλεκτρονίων από Ακτίνες-x (XPS) χρησιμοποιείται για τον καθορισμό της χημικής σύστασης της επιφάνειας του στερεού. Η πολλαπλότητα των χημικών καταστάσεων για ένα συγκεκριμένο είδος ατόμου υποδηλώνει την ύπαρξη μιας ποικιλίας τοπικών ατομικών διατάξεων στην επιφάνεια του υμενίου. Επομένως οι αλλαγές των ηλεκτρονιακών ιδιοτήτων στην επιφάνεια μπορούν να συσχετιστούν άμεσα με αλλαγές που αφορούν στην επιφανειακή δομή, οι οποίες προκαλούνται είτε μεταβάλλοντας διάφορες παραμέτρους όπως η σύσταση του υλικού είτε με την επιβολή κάποιου εξωτερικού ερεθίσματος όπως η θέρμανση και η ακτινοβόληση, είτε με τη φωτο-διάλυση ατόμων μετάλλου (Ag) στο εσωτερικό τους. Μεταβάλλοντας την σύσταση σε PLD υμένια AsxSe100-x και υποβάλλοντας τα σε θέρμανση, σε θερμοκρασία 150ºC (δηλαδή λίγο πιο κάτω από το Τg) οι πιο έντονες αλλαγές παρατηρήθηκαν στο ηλεκτρονικό περιβάλλον των ατόμων αρσενικού στα υμένια με ενδιάμεσες συστάσεις (As50Se50, As60Se40). Στην συνέχεια, η συμμετρική σύσταση As50Se50 μελετήθηκε διεξοδικότερα λόγω της μεγάλης ποικιλομορφίας και ετερογένειας σε νανο-κλίμακα. Τα αποτελέσματα έδειξαν ότι η ακτινοβόληση και η θέρμανση οδηγούν την δομή σε δύο διαφορετικές άμορφες καταστάσεις με διαφορετικό ποσοστό δομικών μονάδων. Το φαινόμενο είναι αντιστρεπτό και επαναλήψιμο σε διαδοχικούς κύκλους θέρμανσης και ακτινοβόλησης για τα PLD υμένια ενώ δεν ισχύει το ίδιο για τα ΤΕ υμένια. Ο προσδιορισμός του δείκτη διάθλασης με την χρήση φασματοσκοπικής ελλειψομετρίας σε PLD και ΤΕ As50Se50 υμένια, σε διαδοχικές διεγέρσεις ακτινοβόλησης και θέρμανσης, αποκάλυψε την συσχέτιση των αλλαγών στη μικροδομή των υμενίων με τις μεταβολές σε αυτή την μακροσκοπική ιδιότητα του υμενίου. Επιπλέον, εκπονήθηκε μελέτη του φωτο-επαγόμενου φαινομένου της διάχυσης και διάλυσης ατόμων μετάλλου όπως ο Ag στην δομή των υμενίων PLD και ΤΕ As50Se50 με ακτινοβόληση ακτίνων- x και ορατού φωτός (laser ενέργειας συγκρίσιμης με το ενεργειακό χάσμα του ημιαγωγού). Σκοπός ήταν η μελέτη της εξέλιξης των σχηματιζόμενων χημικών ειδών κατά τα διάφορα στάδια του φαινομένου σε αντίθεση με την έως τώρα υπάρχουσα πρακτική που εστιάζει κυρίως στον μηχανισμό της κινητικής του φαινομένου. Μετρήσεις ανάλυσης σε βάθος με XPS και SIMS έλαβαν χώρα με σκοπό την διερεύνηση του προφίλ της συγκέντρωσης του μετάλλου στο εσωτερικό του υμενίου, πριν και μετά την επαγωγή του φαινομένου. / Amorphous, are a wide category of materials with significant properties that do not occur in their respective crystalline phase. In this work, a special category of selected amorphous chalcogenide compounds (chalcogenides) in the form of thin (1μm) films, is studied experimentally. Chalcogens are the elements from Group VIA, namely Sulfur (S), selenium (Se) and tellurium (Te) and therefore compounds containing one or more of these elements together with elements such as As, Ge, P, Bi, Si, Sb, Ga, Ag, etc. form chalcogenide compounds. The fact that their energy gap is within the range of visible light and near infrared has given rise to numerous of photo-induced (non-thermal) phenomena when these materials are irradiated with light of appropriate wavelength and power density. The photo-induced effects include changes in structural, mechanical, chemical, optical, electrical, etc. properties. More specifically, through the study of photo-induced effects it is possible to control micro-structural changes and macroscopic properties of the material. Therefore these materials have a strong technological interest for applications in optics, in microelectronics and as elements in circuits for optical data storage (optical memories). The aim of this work is to study and understand at a basic level the micro-structural characteristics of chalcogenide films of selected compounds under the influence of various external stimuli as well as to achieve a correlation between microscopic characteristics and useful for applications macroscopic properties. In the present work the electronic surface structure of AsxSe100-x films prepared by thermal evaporation (TE) and by pulsed laser deposition (PLD) was studied systematically with surface sensitive techniques such as X-ray and Ultraviolet Photoelectron Spectroscopies ( XPS, UPS). X-ray photoelectron spectroscopy is used to determine the chemical composition of the surface of a solid. The multiplicity of chemical states for a specific type of atom suggests the existence of a variety of local individual arrangements on the surface of the film. Therefore, the changes of electronic properties on the surface can be directly correlated with changes on the surface structure, which are caused either by altering various parameters such as the composition of the material or by imposing an external stimulus such as annealing and irradiation, or by photo-dissolution of silver atoms (Ag) in their structure. Changing the composition of PLD AsxSe100-x films and submitting them to annealing below the Tg, the most pronounced changes occurred in the electronic environment of atoms in films with intermediate compositions (As50Se50, As60Se40). The symmetrical composition As50Se50 was chosen and studied thoroughly because of the great diversity and heterogeneity of its micro-structural units in nano-scale. The results showed that irradiation and annealing lead the film to two different amorphous states, with different percentage of structural units. The phenomenon is reversible and repeatable in successive cycles of annealing and irradiation for the PLD films while this is not true for the TE films. The determination of the refractive index using spectroscopic ellipsometry in PLD and TE As50Se50 films, in successive irradiation and annealing stimuli, revealed the correlation of the changes in the microstructure of films with the changes in this macroscopic property. Furthermore, the photo-induced diffusion and dissolution of silver (Αg) atoms in the structure of PLD and TE As50Se50 films induced by x-rays and visible light (laser energy comparable to the energy gap of semiconductor) was studied. The purpose of these experiments was to follow the chemical species formed during the various stages of the diffusion procedure with XPS in contrast to most studies so far focusing mainly on the mechanism of kinetics of the diffusion reaction. Depth profile analysis by XPS and SIMS took place in order to investigate the concentration profile of the metal atoms in depth of the films, before and after the induction of the effect.

Page generated in 0.0617 seconds