Spelling suggestions: "subject:"chalcogenides."" "subject:"chalcogenide.""
21 |
Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy StorageXia, Chuan 22 March 2018 (has links)
The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation of electrochemical capacitors will in large part depend on the use of pseudocapacitive materials in one or both electrodes. Developing pseudocapacitors to have both high energy and power density is crucial for future energy storage systems. This dissertation evaluates two different material systems to achieve high energy density pseudocapacitive energy storage.
This research presents the successful preparation and application of ternary NiCo2S4, which is based on the surface redox mechanism, in the area of pseudocapacitive energy storage. Attention has been paid to understanding its basic physical properties which can impact its electrochemical behavior. Well-defined single- and double-shell NiCo2S4 hollow spheres were fabricated for pseudocapacitor applications, showing much improved electrochemical storage performance with good energy and power densities, as well as excellent cycling stability. To overcome the complexity of the preparation methods of NiCo2S4 nanostructures, a one-step approach was developed for the first time. Asymmetric pseudocapacitors using NiCo2S4 as cathode and graphene as anode were also fabricated to extend the operation voltage in aqueous electrolyte, and thus enhance the overall capacity of the cells. Furthermore, high-performance on-chip pseudocapacitive energy storage was demonstrated using NiCo2S4 as electrochemically active materials.
This dissertation also involves another material system, intercalation pseudocapacitive VO2 (B), that displays a different charge storage mechanism from NiCo2S4. By constructing high-quality, atomically-thin two-dimensional (2D) VO2 (B) sheets using a general monomer-assisted approach, we demonstrate that a rational design of atomically thin, 2D nanostructures of atypically layered systems can greatly lower the interaction energy and Li+ diffusion barrier, and it can completely suppress the crystal transformation during the charge-discharge process. As a result, we have successfully enabled the kinetically sluggish step to proceed at room temperature. We show that even at charge-discharge rates as fast as 100C (36 s), these 2D electrodes still offer a high capacity of 140 mAh g-1 due to the rapid Li+ ion diffusion in these 2D sheets. These results discussed in this part conclusively show that the ultrathin 2D geometry of atypically layered or non-layered materials could lead to significantly enhanced pseudocapacitive performance.
|
22 |
Synthesis and Characterization of Novel Quaternary ThioaluminogermanatesAl-Bloushi, Mohammed 05 1900 (has links)
Metal chalcogenides form an important class of inorganic materials, which include several technologically important applications. The design of metal chlcogenides is of technological interest and has encouraged recent research into moderate temperature solid-state synthetic methods for the single crystal growth of new materials.
The aim of this project is the investigation and development of synthetic methodology for the synthesis of novel metal chlcogenides. The new inorganic compounds of the type “M(AlS2)(GeS2)” (M = Na and K) are new metal-chalcogenides, synthesized by the classical solid state approach. The characterization of these compounds was carried out by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Single crystal and powder X-ray diffraction, solid state Nuclear Magnetic Resonance (NMR), Ultraviolet-visible (UV-VIS), Infrared (IR) and Raman spectroscopy. These theses study the synthesis of metal chalcogenides through the use of standard chemical techniques. The systematic studies demonstrate the effect of the reactants ratio and reaction temperature on the synthesis and growth of the single crystals. Metal chalcogenides have several potential applications in gas separation, ion exchange, environmental remediation, and energy storage. Especially, the ion exchange materials have found possible applications in waste-water treatment, water softening, metal separation, and production of high purity water.
|
23 |
Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal ThiophosphatesAlahmary, Fatimah S. 05 1900 (has links)
The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials.
The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades.
Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.
|
24 |
Effect of Antimony Doping in Iron ChalcogenidesNagendra, G M January 2013 (has links) (PDF)
This thesis is organized in to six chapters. The contents of each chapter are briefly summarized in the following sections.
Chapter 1 introduces different Fe-based superconductors. Within a very short span of their discovery, they quickly expanded to include six different crystal structures. The crystal structure of these systems and their Tc’s are discussed in this chapter. In particular, the properties of Fe1+yTe are described with specific reference to isovalent doping and nonisovalent doping using different elements that affect the superconducting transition in this material.
In chapter 2, the basic principles of growth and characterization techniques are explained. These are: 1. Modified Bridgman technique, 2. X-ray diffraction technique, 3. Electron Probe Micro Analyzer to determine chemical composition, 4. SQuID – For magnetization measurements, 5. Closed cycle refrigerator and He Cryostat – for resistivity measurements. The fabrication of high temperature furnace for Bridgman setup is also discussed.
Crystal growth and characterization of parent Fe1+yTe and Sb doped Fe1+yTe system are discussed in chapter 3 and chapter 4 respectively. Details of crystal growth by modified Bridgman technique are described here. The characterization includes analysis of crystalline phase, structure and composition. Detailed structural information is extracted from Rietveld refinement of X-ray powder diffraction and the composition analyzed using EPMA. Temperature dependence of magnetization and transport behavior are also discussed. The ideal doping range of Sb in Fe1+yTe is defined in this chapter.
In chapter 5, the effect of Sb doping of Fe1.05Te0.50Se0.50 is investigated. The crystal growth and characterization of the new superconductor, Fe1.05Te0.50Se0.48Sb0.02 are deliberated. The superconducting transition observed in transport measurements at zero field and the magnetic field dependence of transition temperatures are discussed. Estimation of upper critical
Page|vi|Preface
field using Ginzburg-Landau theory as well as the field dependence of magnetization of this crystal is explained in this chapter.
The thesis concludes with a chapter on summary and outlook on all investigations. Finally, the scope of future work is outlined in the last section.
|
25 |
Syntheses, characterization and emission studies of luminescent homo-and heterometallic clusters based on coinage metal alkynyl andchalcogenide coreLo, Wing-yin., 盧詠妍. January 2004 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
26 |
Two dimensional transition metal dichalcogenides grown by chemical vapor depositionTsang, Ka-yi, 曾家懿 January 2014 (has links)
An atomically thin film of semiconducting transition metal dichalcogenides (TMDCs) is emerging as a class of key materials in chemistry and physics due to their remarkable chemical and electronic properties. The TMDCs are layered materials with weak out-of-plane van der Waals (vdW) interaction and strong in-plane covalent bonding enabling scalable exfoliation into two-dimensional (2D) layers of atomic thickness. The growth techniques to prepare these 2D TMDC materials in high yield and large scale with high crystallinity have attracted intensive attention recently because of the new properties and potentials in nano-elctronic, optoelectronic, spintronic and valleytronic applications.
In this thesis, I develop methods for the chemical synthesis of 2D TMDCs films. The relevant growth mechanism and material characteristics of these films are also investigated. Molybdenum disulfide (MoS2) is synthesized by using molybdenum trioxide (MoO3) and sulfur (S) powder as the precursor. The films are formed on substrate pre-treated with reduced graphene oxide as the catalyst. However, this method cannot be extended to other TMDC materials such as molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2) because reduced graphene oxide (rGO) reacts with selenium to form alloy materials rather than TMDC films. At the same time, the conversion of MoO3 to MoSe2 or that of tungsten trioxide (WO3) to WSe2 without the assistance of hydrogen in the chemical reaction is not thermodynamically feasible because the oxygen in the metal oxide cannot be replaced by selenium due to lower reactivity of the latter. On the other hand, I demonstrate that MoSe2 film can be synthesized directly by using MoSe2 and Se powder. Furthermore, the method of sulfurization or selenization of pre-deposited metal film can be promising due to precise thickness/size controls. Finally, some perspectives on the engineering challenges and fabrication methods of this family of materials will be given. / published_or_final_version / Physics / Master / Master of Philosophy
|
27 |
Synthesis and study of oxides and chalcogenides : thin films and crystalsPark, Sangmoon 22 July 2002 (has links)
Graduation date: 2003
|
28 |
Electrodeposition of PbS, PbSe and PbTe thin films /Saloniemi, Heini. January 2000 (has links) (PDF)
Thesis (doctoral)--University of Helsinki, 2000. / Includes bibliographical references. Also available on the World Wide Web.
|
29 |
Surface interactions of mercury on gold foil electrodes in electrodeposition and stripping and; an investigation of free thiolate ions from metal-thiolate chalcogenides /Watson, Charles Martin, January 2003 (has links) (PDF)
Thesis (Ph. D.) in Chemistry--University of Maine, 2003. / Includes vita. Includes bibliographical references (leaves 181-196).
|
30 |
Growth and characterization of wide-gap semiconducting oxide and chalcogenide thin films by pulsed laser deposition /Newhouse, Paul F. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Some pages left blank intentionally. Includes bibliographical references (leaves 125-130). Also available on the World Wide Web.
|
Page generated in 0.0571 seconds