• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etudes expérimentale et numérique de l'effet des mécanismes de plasticité sur la rupture fragile par clivage dans les aciers faiblement alliés

Libert, Maximilien 21 September 2007 (has links) (PDF)
Il est crucial de garantir l'intégrité des cuves de réacteurs à eau pressurisée (REP) en cas de fonctionnement accidentel : dans ce contexte, la compréhension et la modélisation des mécanismes de rupture fragile des aciers constituent des éléments décisifs de l'évaluation complexe des durées de vie des cuves.<br />Les modèles d'approche locale de la rupture par clivage constituent l'un des principaux outils de prédiction de la ténacité des aciers faiblement alliés. La dispersion des contraintes à rupture est interprétée comme un effet de la distribution des défauts dans la microstructure, mais l'effet des hétérogénéités mécaniques n'est pas pris en compte. Or, en dessous d'une température de transition de comportement Ta (de l'ordre de 25°C), les mécanismes de déformation sont grandement affectés par la température et la vitesse de déformation.<br />Notre approche consiste à prendre en compte l'effet des hétérogénéités de contraintes dans un critère local d'amorçage du clivage. Les résultats de calculs de microstructure sont utilisés pour proposer une description statistique de l'évolution des distributions de contraintes locales. Cette approche statistique permet de proposer un modèle d'approche locale de la rupture dépendant à la fois des hétérogénéités mécaniques et des distributions de tailles de défauts.<br />Le comportement du matériau et son évolution sont caractérisés aux échelles microscopique et macroscopique dans le domaine de température [25°C,-196°C]. Des essais de traction simple, de sauts de vitesse et de température, et de ténacité sont réalisés.<br />Nous proposons un modèle de comportement micromécanique décrivant le comportement plastique en dessous de la température de transition Ta. La loi de comportement est basée sur les mécanismes de déformation décrits dans la bibliographie et identifiée par méthode inverse à partir des essais mécaniques. Les observations au MET et la caractérisation du comportement activé thermiquement permettent de fixer plusieurs paramètres du modèle.<br />Des simulations sont réalisées afin de modéliser les distributions de contrainte principale σ1 dans deux microstructures bainitiques correspondant au volume élémentaire de l'approche locale de la rupture. L'effet de la température et de la triaxialité sur l'évolution des hétérogénéités est caractérisé. Nous proposons une fonction de distribution décrivant la distribution des valeurs locales de σ1 en fonction des contraintes principales et équivalente <σ1> et <σmises> moyennes dans la microstructure.<br />Cette fonction est utilisée pour formuler un modèle d'approche locale de la rupture intégrant la distribution des tailles de défauts critiques et les distributions de σ1. On montre que dans certains cas, la dispersion des contraintes locales suffit à expliquer les dispersions des contraintes à rupture à l'échelle du volume élémentaire. Les dispersions de contraintes à rupture sont en accord avec celles prédites par le modèle de Beremin. La prise en compte des hétérogénéités mécaniques permet d'introduire une dépendance de la probabilité de rupture en fonction de la température, de la déformation et de la triaxialité. Il reste à appliquer le modèle d'approche locale au calcul d'éprouvettes CT et de comparer les dispersions de ténacités simulées à celles mesurées expérimentalement.
2

Analyse multiéchelle des mécanismes de déformation du sel gemme par mesures de champs surfaciques et volumiques / Micromechanics of halite investigated by 2D and 3D multiscale full field measurements

Gaye, Ababacar 20 March 2015 (has links)
Dans ce travail est proposée une méthodologie générale de micromécanique expérimentale multi-échelle des polycristaux. Elle a été appliquée dans le cas d'un polycristal de sel gemme, qui en plus d'avoir des applications industrielles de stockage d'énergie et de déchets, constitue un matériau modèle de micromécanique présentant une déformation plastique aussi bien à l'ambiante qu'à haute température. La déformation ductile à l'échelle de la microstructure opère par la plasticité cristalline intra-granulaire traditionnelle, mais aussi des mécanismes de déformation inter-granulaires, tels que le glissement aux joints de grains. Nous avons dans un premier temps quantifié précisément la part de chacun de ces mécanismes locaux dans la déformation macroscopique du sel en se basant sur la technique de corrélation d'images numériques (CIN), obtenues au cours d'un essai de compression uni-axiale in-situ dans la chambre d'un microscope électronique à balayage (MEB). Afin d'augmenter la précision de cette quantification, des motifs spéciaux gravés aux interfaces des grains par micro-lithograhie ont été proposés. Ensuite, les observations surfaciques (par MEB) ont été étendues au cœur du matériau grâce à la micro-tomographie à rayons X et à la technique de corrélation d'images volumiques (CIV). Pour ce faire, des particules micrométriques de cuivre (3 % en volume) ont été dispersées dans le matériau lors de son élaboration, afin d'avoir un marquage local volumique adapté pour la CIV. Différentes microstructures (en termes de taille moyenne de grain) ont été considérées. De nouvelles procédures de CIV ont permis d'accéder à la répartition tridimensionnelle de la déformation ductile à l'échelle de la microstructure polycristalline avec une précision inferieure à la taille moyenne de grain. Les mécanismes de déformation observés à cœur d'échantillon sous chargement uni-axial sont cohérents avec ceux identifiés par les observations surfaciques. L'importance des mécanismes inter-granulaires dans la déformation ductile et dans l'endommagement diffus du sel a été confirmée. Une caractérisation tridimensionnelle de la microstructure par DCT (Diffraction Contrast Tomography) a été effectuée et comparée à des mesures surfaciques d'orientation cristalline par EBSD (Electron BackScattered Diffraction). Enfin, la comparaison des champs de déformation surfacique et volumique obtenus sur les mêmes échantillons a permis de retrouver les mêmes organisations et développements des localisations de déformation ductile en surface et en volume, et de les relier aux conditions de chargement et à la microstructure / We develop in this study new experimental methodologies for the multi-scale experimental investigation of the micromechanics of polycrystalline materials. These methodologies are applied to synthetic halite (NaCl), which is a convenient model polycristal due to its viscoplastic behavior at both ambient and high temperatures (350°C). In addition, halite is used for industrial applications such as underground energy and waste storage. The ductile deformation at the scale of the microstructure operates not only through conventional intra-granular plasticity, but also through inter-granular deformation mechanisms, such as grain-boundary sliding (GBS). First, we precisely quantify the relative contribution of each of these local mechanisms to the macroscopic deformation of halite. For this purpose, we apply digital image correlation (DIC) technique to high resolution images obtained during uniaxial compression tests in the chamber of a scanning electron microscope (SEM). The DIC algorithms have been modified to account for the discontinuous kinematics at grain boundries. We also propose a method to improve accuracy of GBS quantification, which consists in creating specific artificial patterns across grain-boundaries by electron beam lithography. The results show that GBS is present from the beginning of plastic deformation of the polycrystal. The 2D observations (using SEM) are complemented by 3D volume investigations using X-ray computed microtomography and Digital Volume Correlation (DVC) techniques. In order to obtain local volume markers differing in contrast (density) from NaCl and adapted to DVC, micrometric copper particles (3 % in volume) are dispersed into the material during its elaboration. Various microstructures (in terms of average grain size) are considered. New DVC protocols allow us to obtain the three-dimensional distribution of ductile deformation at the scale of the polycrystalline microstructure, with a spatial resolution finer than the average grain size. 3D and 2D local mechanical fields are compared on the same samples submitted to uniaxial compression. The strain patterns and the deformation mechanisms observed in depth of the sample are consistent with those identified by 2D observations. The results show the same organization and development of strain localization bands in relation with the loading conditions and microstructure, both at the surface and in volume. The importance of inter-granular mechanisms for the plastic deformation and diffuse damage of halite is also confirmed in 3D. Finally, in view of a further numerical model of the plasticity of the polycrystal, the three-dimensional polycrystalline microstructure is characterized by diffraction contrast tomography and compared to 2D measurements obtained by electron BackScattered diffraction
3

Analyse multiéchelle des mécanismes de déformation du sel gemme par mesures de champs surfaciques et volumiques / Micromechanics of halite investigated by 2D and 3D multiscale full field measurements

Gaye, Ababacar 20 March 2015 (has links)
Dans ce travail est proposée une méthodologie générale de micromécanique expérimentale multi-échelle des polycristaux. Elle a été appliquée dans le cas d'un polycristal de sel gemme, qui en plus d'avoir des applications industrielles de stockage d'énergie et de déchets, constitue un matériau modèle de micromécanique présentant une déformation plastique aussi bien à l'ambiante qu'à haute température. La déformation ductile à l'échelle de la microstructure opère par la plasticité cristalline intra-granulaire traditionnelle, mais aussi des mécanismes de déformation inter-granulaires, tels que le glissement aux joints de grains. Nous avons dans un premier temps quantifié précisément la part de chacun de ces mécanismes locaux dans la déformation macroscopique du sel en se basant sur la technique de corrélation d'images numériques (CIN), obtenues au cours d'un essai de compression uni-axiale in-situ dans la chambre d'un microscope électronique à balayage (MEB). Afin d'augmenter la précision de cette quantification, des motifs spéciaux gravés aux interfaces des grains par micro-lithograhie ont été proposés. Ensuite, les observations surfaciques (par MEB) ont été étendues au cœur du matériau grâce à la micro-tomographie à rayons X et à la technique de corrélation d'images volumiques (CIV). Pour ce faire, des particules micrométriques de cuivre (3 % en volume) ont été dispersées dans le matériau lors de son élaboration, afin d'avoir un marquage local volumique adapté pour la CIV. Différentes microstructures (en termes de taille moyenne de grain) ont été considérées. De nouvelles procédures de CIV ont permis d'accéder à la répartition tridimensionnelle de la déformation ductile à l'échelle de la microstructure polycristalline avec une précision inferieure à la taille moyenne de grain. Les mécanismes de déformation observés à cœur d'échantillon sous chargement uni-axial sont cohérents avec ceux identifiés par les observations surfaciques. L'importance des mécanismes inter-granulaires dans la déformation ductile et dans l'endommagement diffus du sel a été confirmée. Une caractérisation tridimensionnelle de la microstructure par DCT (Diffraction Contrast Tomography) a été effectuée et comparée à des mesures surfaciques d'orientation cristalline par EBSD (Electron BackScattered Diffraction). Enfin, la comparaison des champs de déformation surfacique et volumique obtenus sur les mêmes échantillons a permis de retrouver les mêmes organisations et développements des localisations de déformation ductile en surface et en volume, et de les relier aux conditions de chargement et à la microstructure / We develop in this study new experimental methodologies for the multi-scale experimental investigation of the micromechanics of polycrystalline materials. These methodologies are applied to synthetic halite (NaCl), which is a convenient model polycristal due to its viscoplastic behavior at both ambient and high temperatures (350°C). In addition, halite is used for industrial applications such as underground energy and waste storage. The ductile deformation at the scale of the microstructure operates not only through conventional intra-granular plasticity, but also through inter-granular deformation mechanisms, such as grain-boundary sliding (GBS). First, we precisely quantify the relative contribution of each of these local mechanisms to the macroscopic deformation of halite. For this purpose, we apply digital image correlation (DIC) technique to high resolution images obtained during uniaxial compression tests in the chamber of a scanning electron microscope (SEM). The DIC algorithms have been modified to account for the discontinuous kinematics at grain boundries. We also propose a method to improve accuracy of GBS quantification, which consists in creating specific artificial patterns across grain-boundaries by electron beam lithography. The results show that GBS is present from the beginning of plastic deformation of the polycrystal. The 2D observations (using SEM) are complemented by 3D volume investigations using X-ray computed microtomography and Digital Volume Correlation (DVC) techniques. In order to obtain local volume markers differing in contrast (density) from NaCl and adapted to DVC, micrometric copper particles (3 % in volume) are dispersed into the material during its elaboration. Various microstructures (in terms of average grain size) are considered. New DVC protocols allow us to obtain the three-dimensional distribution of ductile deformation at the scale of the polycrystalline microstructure, with a spatial resolution finer than the average grain size. 3D and 2D local mechanical fields are compared on the same samples submitted to uniaxial compression. The strain patterns and the deformation mechanisms observed in depth of the sample are consistent with those identified by 2D observations. The results show the same organization and development of strain localization bands in relation with the loading conditions and microstructure, both at the surface and in volume. The importance of inter-granular mechanisms for the plastic deformation and diffuse damage of halite is also confirmed in 3D. Finally, in view of a further numerical model of the plasticity of the polycrystal, the three-dimensional polycrystalline microstructure is characterized by diffraction contrast tomography and compared to 2D measurements obtained by electron BackScattered diffraction

Page generated in 0.0556 seconds