Spelling suggestions: "subject:"brain boundary sliding"" "subject:"grain boundary sliding""
1 |
A study of low temperature superplasticity of ultrafined-grained AZ31 magnesium alloyLin, Yi-rong 26 August 2010 (has links)
none
|
2 |
Study of Deformation Behavior of Nanocrystalline Nickel using Nanoindentation TechniquesWang, Changli 01 August 2010 (has links)
Nanocrystalline materials with grain size less than 100 nm have been receiving much attention because of their unparallel properties compared with their microcrystalline counterparts. Because of its high hardness, nanocrystalline nickel has been used for MEMS. Long term thermomechnical properties and deformation mechanism at both ambient and elevated temperatures need to be evaluated which is vital for reliability of its applications as structural material.
In this thesis, nanoindentation creep of nanocrystalline nickel with an as-deposited grain size of 14 nm was characterized at elevated temperatures. The nanoindentation creep rate was observed to scale with temperature and applied load (or stress), and could be expressed by an empirical power-law equation for describing conventional crystalline solids. Creep activation energy was found to be close to that for grain boundary self-diffusion in nickel. The activation volume was also evaluated using a stress relaxation technique. The creep results were compared with those for fine-grained nickel in the literature. Possible mechanisms were discussed in light of the creep rate and temperature ranges.
To provide a direct comparison, uniaxial creep tests were conducted on nanocrystalline nickel with an as-deposited grain size of 14 nm at 398 K. It was found that stress exponents under the two test conditions are almost the same, indicating a similar creep mechanism. However, the strain rate measured by nanoindentation creep was about 100 times faster than that by uniaxial creep. The rate difference was discussed in terms of stress states and the appropriate selection of Tabor factor.
To further explore the time-dependent plastic behavior, multiple unload-reload tests were conducted on electrodeposited nanocrystalline nickel in both compression and tension. A hysteresis was observed during each unload-reload cycle, indicating irreversible energy dissipation. The dissipated energy was evaluated and the energy dissipation rate was found to increase with the flow stress to the third power and sensitive to the stress state (tension or compression). A mechanistic model based on grain boundary sliding was proposed to describe the unload-reload behavior. Experimental results were found to be in good agreement with the model predictions, suggesting the observed hysteresis was indeed caused by grain boundary sliding.
|
3 |
Tube extrusion and hydroforming of AZ31 Mg alloysHuang, Chien-Chao 06 July 2004 (has links)
The microstructures and mechanical properties of the AZ31 Mg tubes fabricated by one-pass forward piercing tube extrusion operated at 250-400oC and 10-2-100 s-1 are examined. The grain size is refined from the initial ~75
|
4 |
Analysis on Cavitation in AZ-Series Mg Alloys during Superplastic DeformationLee, Ching-Jen 24 July 2003 (has links)
none
|
5 |
Deformation characteristics of ultrafine-grained AZ31 Mg alloyHsiao, Chun-i 13 August 2009 (has links)
none
|
6 |
Micro- and macro-mechanical testing of grain boundary sliding in a Sn-Bi alloyJiang, Junnan January 2017 (has links)
This project explores the fundamental mechanisms of grain boundary sliding (GBS) with an emphasis on its role in superplasticity, using both micro- and macro-mechanical testing methods. GBS plays an important role in the deformation of polycrystalline materials, especially at high homologous temperatures (above half of the melting point). Classical models for GBS (Rachinger sliding and Lifshitz sliding) assume that all grains and grain boundaries undergo the same process, but recent research has shown this is not true. Individual grain boundaries differ in their ability to participate in sliding and diffusion. Therefore, it is important to investigate the response of individual grain boundaries to stress. This project uses microcantilevers, loaded using a nanoindenter, to investigate the response to stress of individual grain boundaries in Sn-1%Bi, which is expected to exhibit GBS at room temperature. The response of individual grain boundaries are correlated with grain boundary characters determined using electron backscattered diffraction (EBSD). On the macroscopic scale, both in-situ and ex-situ shear tests are conducted to investigate the superplastic behaviour of this material. The strain rate sensitivity index of the material with a grain size of 8.5 μm is found to be around 0.45. Surface marker lines have quantitatively revealed grain boundary sliding. The investigation from surface studies is expanded to the interior of bulk material in 3D by conducting an in-situ tensile test coupled with diffraction contrast tomography (DCT) at a synchrotron facility. The microcantilever tests enable grain boundary sliding and diffusion creep to be investigated separately by varying the normal and shear stresses on the grain boundary plane. GBS is dependent on grain boundary structure (misorientation angle, rotation axis and grain boundary plane orientation). The microcantilever size is similar to the grain size used in the macro-mechanical tests. It is demonstrated that the shear stress for steady-state GBS is comparable in micro- and macro-tests. Grain neighbour switching events have been identified in the interior of bulk material in 3D for the first time.
|
7 |
Understanding the Interaction between Grain Boundaries and Precipitates in Ni-Al Using Molecular DynamicsMorrison, Rachel Louise 31 August 2018 (has links)
No description available.
|
8 |
Microwave-Assisted Hydrothermal Synthesis of Fine Grained La<sub>0.77</sub>Sr<sub>0.20</sub>Al<sub>0.90</sub>Mn<sub>0.10</sub>O<sub>3-δ</sub>Hoy, Julia Richardson 25 August 2010 (has links)
No description available.
|
9 |
The Effect of Dislocation Slip on Superplastic Behavior of AZ31 Magnesium AlloyChen, Kuan-Lun 13 July 2011 (has links)
This thesis describes the effect of dislocation slip on superplastic deformation of AZ31 magnesium alloy. Through two different routes of ECAE (equal channel angular extrusion), two types of specimens having the same grain size but different texture were obtained. One is favorable for basal slip and the other is not.
Under the same condition of deformation, the strain rate sensitivity and contribution of grain boundary sliding to total elongation in these two different specimens are almost the same. As for elongation, not much difference was found. The present results demonstrate that the relationship between dislocation slip and grain boundary sliding in superplastic AZ31 magnesium alloy is non-obvious.
|
10 |
Neural Network Approach for Predicting the Failure of Turbine ComponentsBano, Nafisa 24 July 2013 (has links)
Turbine components operate under severe loading conditions and at high and varying temperatures that result in thermal stresses in the presence of temperature gradients created by hot gases and cooling air. Moreover, static and cyclic loads as well as the motion of rotating components create mechanical stresses. The combined effect of complex thermo-mechanical stresses promote nucleation and propagation of cracks that give rise to fatigue and creep failure of the turbine components. Therefore, the relationship between thermo-mechanical stresses, chemical composition, heat treatment, resulting microstructure, operating temperature, material damage, and potential failure modes, i.e. fatigue and/or creep, needs to be well understood and studied. Artificial neural networks are promising candidate tools for such studies. They are fast, flexible, efficient, and accurate tools to model highly non-linear multi-dimensional relationships and reduce the need for experimental work and time-consuming regression analysis. Therefore, separate neural network models for γ’ precipitate strengthened Ni based superalloys have been developed for predicting the γ’ precipitate size, thermal expansion coefficient, fatigue life, and hysteresis energy. The accumulated fatigue damage is then estimated as the product of hysteresis energy and fatigue life. The models for γ’ precipitate size, thermal expansion coefficient, and hysteresis energy converge very well and match experimental data accurately. The fatigue life proved to be the most challenging aspect to predict, and fracture mechanics proved to potentially be a necessary supplement to neural networks. The model for fatigue life converges well, but relatively large errors are observed partly due to the generally large statistical variations inherent to fatigue life. The deformation mechanism map for 1.23Cr-1.2Mo-0.26V rotor steel has been constructed using dislocation glide, grain boundary sliding, and power law creep rate equations. The constructed map is verified with experimental data points and neural network results. Although the existing set of experimental data points for neural network modeling is limited, there is an excellent match with boundaries constructed using rate equations which validates the deformation mechanism map.
|
Page generated in 0.1026 seconds