• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neural Network Approach for Predicting the Failure of Turbine Components

Bano, Nafisa 24 July 2013 (has links)
Turbine components operate under severe loading conditions and at high and varying temperatures that result in thermal stresses in the presence of temperature gradients created by hot gases and cooling air. Moreover, static and cyclic loads as well as the motion of rotating components create mechanical stresses. The combined effect of complex thermo-mechanical stresses promote nucleation and propagation of cracks that give rise to fatigue and creep failure of the turbine components. Therefore, the relationship between thermo-mechanical stresses, chemical composition, heat treatment, resulting microstructure, operating temperature, material damage, and potential failure modes, i.e. fatigue and/or creep, needs to be well understood and studied. Artificial neural networks are promising candidate tools for such studies. They are fast, flexible, efficient, and accurate tools to model highly non-linear multi-dimensional relationships and reduce the need for experimental work and time-consuming regression analysis. Therefore, separate neural network models for γ’ precipitate strengthened Ni based superalloys have been developed for predicting the γ’ precipitate size, thermal expansion coefficient, fatigue life, and hysteresis energy. The accumulated fatigue damage is then estimated as the product of hysteresis energy and fatigue life. The models for γ’ precipitate size, thermal expansion coefficient, and hysteresis energy converge very well and match experimental data accurately. The fatigue life proved to be the most challenging aspect to predict, and fracture mechanics proved to potentially be a necessary supplement to neural networks. The model for fatigue life converges well, but relatively large errors are observed partly due to the generally large statistical variations inherent to fatigue life. The deformation mechanism map for 1.23Cr-1.2Mo-0.26V rotor steel has been constructed using dislocation glide, grain boundary sliding, and power law creep rate equations. The constructed map is verified with experimental data points and neural network results. Although the existing set of experimental data points for neural network modeling is limited, there is an excellent match with boundaries constructed using rate equations which validates the deformation mechanism map.
2

Neural Network Approach for Predicting the Failure of Turbine Components

Bano, Nafisa January 2013 (has links)
Turbine components operate under severe loading conditions and at high and varying temperatures that result in thermal stresses in the presence of temperature gradients created by hot gases and cooling air. Moreover, static and cyclic loads as well as the motion of rotating components create mechanical stresses. The combined effect of complex thermo-mechanical stresses promote nucleation and propagation of cracks that give rise to fatigue and creep failure of the turbine components. Therefore, the relationship between thermo-mechanical stresses, chemical composition, heat treatment, resulting microstructure, operating temperature, material damage, and potential failure modes, i.e. fatigue and/or creep, needs to be well understood and studied. Artificial neural networks are promising candidate tools for such studies. They are fast, flexible, efficient, and accurate tools to model highly non-linear multi-dimensional relationships and reduce the need for experimental work and time-consuming regression analysis. Therefore, separate neural network models for γ’ precipitate strengthened Ni based superalloys have been developed for predicting the γ’ precipitate size, thermal expansion coefficient, fatigue life, and hysteresis energy. The accumulated fatigue damage is then estimated as the product of hysteresis energy and fatigue life. The models for γ’ precipitate size, thermal expansion coefficient, and hysteresis energy converge very well and match experimental data accurately. The fatigue life proved to be the most challenging aspect to predict, and fracture mechanics proved to potentially be a necessary supplement to neural networks. The model for fatigue life converges well, but relatively large errors are observed partly due to the generally large statistical variations inherent to fatigue life. The deformation mechanism map for 1.23Cr-1.2Mo-0.26V rotor steel has been constructed using dislocation glide, grain boundary sliding, and power law creep rate equations. The constructed map is verified with experimental data points and neural network results. Although the existing set of experimental data points for neural network modeling is limited, there is an excellent match with boundaries constructed using rate equations which validates the deformation mechanism map.
3

Étude de l'interaction dislocation - amas de lacunes par simulations numériques / Study of the dislocation - vacancy clusters interaction by numerical simulations

Landeiro dos Reis, Marie 27 September 2019 (has links)
Des amas de lacunes ont été observés et caractérisés expérimentalement dans les métaux de haute pureté après déformation plastique ou après une suite de traitements thermiques particuliers. Ces amas sont des obstacles à la propagation des dislocations et peuvent par conséquent induire un durcissement du métal.Cette étude par simulations numériques a permis d'explorer différents mécanismes de propagation de dislocations dans une concentration d'amas en fonction de la contrainte de cisaillement appliquée et de la température. À haute contrainte, la force appliquée sur la dislocation devient supérieure aux forces d'ancrage s’exerçant sur la ligne. La dislocation franchit la distribution d'amas en glissant et en cisaillant les amas. La dépendance de la force d'ancrage en fonction de la taille de l'amas est ajustée sur nos simulations de statique moléculaire. Dans ce domaine de contrainte, les configurations d'amas ancrant la dislocation sont rares et l'activation thermique suffit à désancrer la ligne. La probabilité de désancrer la ligne dépend de l'enthalpie d'activation, un paramètre que nous avons également estimé à l'aide d'un modèle analytique ajusté sur nos résultats atomistiques. À plus faible contrainte, lorsque la force appliquée est inférieure aux forces d'ancrage induites par les amas, la probabilité que la dislocation se désancre uniquement par glissement devient faible. La diffusion des lacunes, émises préférentiellement des amas, intervient alors et favorise la formation de crans. Cela contribue au désancrage de la ligne. Ce mécanisme est le glissement assisté par la montée. Les barrières d'émission, d'absorption et de migration de lacunes ont été déterminées par statique moléculaire et sont fortement dépendantes du champ élastique et de la distorsion du réseau atomique générés par la présence de la dislocation. Cela induit une forte anisotropie de diffusion au voisinage des dislocations qui conduit notamment au mécanisme de 'pipe diffusion'. L'évolution au cours du temps de l'ensemble de ces mécanismes a été étudiée à l'aide d'un modèle de ligne élastique couplé à un algorithme de Monte Carlo cinétique dont l'ensemble des barrières d'énergie provient de nos simulations atomistiques. Moyennant les hypothèses du modèle, nous avons alors obtenu une estimation de la vitesse des dislocations en fonction de la contrainte et de la température appliquée. Nous avons ensuite utilisé la loi d'Orowan pour estimer la vitesse de déformation liée à ces mécanismes. / Vacancy clusters have been observed and characterized experimentally in highly pure metals after plastic deformation or after a particular sequence of heat treatments. These clusters hinder the dislocation propagation and can therefore harden the metal.Using numerical simulations we have explored different mecanisms of dislocation propagation through a vacancy-cluster distribution, for several applied shear stress and temperature. At high stresses, the force applied on the dislocation becomes greater than the pinning forces acting on the line. The dislocation gets through the cluster distribution by gliding and shearing the clusters. The dependence of the pinning force with the cluster size is adjusted on our molecular static simulations. In this stress range, the pinning configurations are rare and the thermal activation is sufficient to unpin the line. The probability for the line to pass the pinning configuration depends on the activation enthalpy, a parameter that we have also estimated using an analytical model adjusted on our atomistic results. At lower stresses, when the applied force is below the pinning forces induced by the cluster, the probability that the dislocation unpins by pure glide becomes negligeable. The diffusion of vacancies, emitted preferentially from the vacancy clusters, intervenes and promotes the formation of jogs that contributes to the unpinning of the line. Such a mecanism is the glide assisted by climb. The emission, the absorption and the vacancy migration barriers have been determined by molecular static and are highly dependent on the elastic field and the atomic network distortion induced by the dislocation. This promotes a strong diffusion anisotropy in the vicinity of the dislocations which leads in particular to the pipe diffusion mechanism. The evolution with time of all these mechanisms has been studied using an elastic line model coupled to a kinetic Monte Carlo algorithm in which the parameters come from our atomistic simulations. According to the model assumptions, we obtained an estimation of dislocation velocity as a function of the applied shear stress and the temperature. We used the Orowan's law to estimate the strain rate related to such mechanisms.
4

Etude des mécanismes de déformation des alliages de zirconium après et sous irradiation / Study of the deformation mechanisms of zirconium alloys after and under irradiation

Gaume, Marine 06 November 2017 (has links)
Au sein des Réacteurs à Eau Pressurisée, le flux de neutrons entraîne une modification des propriétés mécaniques des gaines à combustible en alliage de zirconium. Bien que leur comportement macroscopique soit bien connu, les mécanismes microscopiques de la déformation des alliages de zirconium restent à caractériser. Afin de simuler l'irradiation aux neutrons, des irradiations aux particules chargées (ions et électrons) ont été réalisées à 400 et 450°C sur un alliage de zirconium: le Zircaloy-4 RXA. L'analyse expérimentale de la microstructure obtenue après irradiation, effectuée au Microscope Electronique en Transmission (MET), a montré la présence de défauts cristallins: les boucles de dislocation de vecteur de Burgers <a>. Leur évolution au cours de l'irradiation (taille et densité), ainsi que leurs caractéristiques (nature et plan d'habitat) ont été déterminées et discutées sur la base de la diffusion des défauts ponctuels. Les résultats obtenus suggèrent une diffusion des auto-interstitiels très faiblement anisotrope. Des expériences de traction in-situ ont été réalisées au MET, après irradiation aux ions, afin d'activer le glissement des dislocations et d'observer leurs interactions avec ces boucles <a>. Certains cas d'interactions observés expérimentalement ont été modélisés par Dynamique des Dislocations pour une meilleure compréhension des mécanismes. L'effet simultané de la contrainte et de l'irradiation sur les mécanismes de déformation a ensuite été étudié. Des irradiations in-situ aux électrons et aux ions ont été effectuées, sans et avec application d'une contrainte. Des mécanismes de déformation impliquant la montée des dislocations ont ainsi été mis en évidence. Grâce à l'ensemble de cette étude, des modèles basés sur les mécanismes identifiés pourront être, à terme, proposés afin de prédire le comportement des alliages de zirconium en réacteur. / In Pressurized Water Reactors, the neutron flux leads to a change in the mechanical properties of the fuel cladding tubes made of zirconium alloys. Although their macroscopic behavior is well known, the microscopic deformation mechanisms of zirconium alloys still need to be characterized. In order to simulate the neutron irradiation, charged particles irradiations (ion and electron) were carried out at 400°C and 450°C on a zirconium alloy: RXA Zircaloy-4. The experimental analysis of the irradiated microstructure, performed by using a Transmission Electron Microscope (TEM), have shown some crystalline defects: dislocation loops with a <a> Burgers vector. Their evolution (size and density) and their characteristics (nature and habit plane) have been determined and discussed based on the point defects diffusion. The results suggest a weak anisotropy in the self-interstitial diffusion. In-situ tensile tests were performed using a TEM, after ion irradiation, in order to activate the dislocation glide and to observe their interaction with the <a> loops. Some of the experimental cases of interaction have been simulate using Dislocation Dynamics for a better understanding of the mechanisms. The simultaneous effect of the stress and of the irradiation on the deformation mechanisms have been then studied. In-situ electron and ion irradiations were conducted, with and without an applied stress. Deformation mechanisms involving dislocation climb have thus been demonstrated. Through this study, models based on the identified mechanisms may be suggested, in order to predict the behavior of zirconium alloys in the reactor.
5

Charakterisierung des Relaxationsverhaltens von Si 1-x Ge x /Si(001) Schichten mittels Röntgentopographie

Pfeiffer, Jens-Uwe 14 December 2001 (has links)
Die Herstellung von verspannten Schichten mittels Heteroepitaxie gewinnt in der aktuellen Festkörperphysik zunehmend an Bedeutung, insbesondere wenn es gelingt, Schichten mit unterschiedlichen Gitterparametern in hoher kristalliner Perfektion, wie sie für die Herstellung elektronischer Bauelemente notwendig ist, aufeinander abzuscheiden. Der Einsatz verspannter Schichtsysteme erlaubt es, bestimmte Materialeigenschaften, wie die Ladungsträgerbeweglichkeiten und den Bandabstand, gezielt zu beeinflussen. Im Rahmen der vorliegenden Arbeit wurde die frühe Phase der Relaxation von dünnen verspannten metastabilen Silizium-Germanium-Mischkristallschichten auf (001)-Siliziumsubstrat untersucht. Derartige metastabile Schichten bilden bei Temperaturbehandlung sogenannte Fehlanpassungsversetzungen aus. Die Ausbildung dieser Versetzungen in makroskopischer Ausdehnung in nahezu perfekt kristallinen Materialien setzt einen Nukleationsvorgang und die Ausbreitung durch Gleiten bzw. Klettern voraus. Diese Vorgänge wurden am o.g. Materialsystem systematisch untersucht. Die Untersuchung außerordentlich geringer Versetzungsdichten erfolgte mittels in-situ und ex-situ Röntgentopographie sowie ergänzender Messungen mittels hochauflösender Röntgendiffraktometrie. Die Plane-view-Transmissionselektronenmikroskopie sowie Atomkraftmikroskopie ergänzten die Experimente auf der damit möglichen Längenskala insbesondere für die Beurteilung des Verhaltens von sich kreuzenden Versetzungen. Es wurden Versetzungsgleitgeschwindigkeiten in Abhängigkeit von verschiedenen Fremdstoffkonzentrationen und Epitaxieverfahren gemessen. Ein signifikante Einfluß dieser Verfahren auf die Gleitgeschwindigkeit konnte nicht nachgewiesen werden, jedoch veringert der Sauerstoffgehalt einiger Proben die Versetzungsgleitgeschwindigkeit. Eine Kohlenstoffdotierung von 0,1% führt bei Einbau auf Gitterplätzen zu keinem messbaren Einfluß auf die Ausbreitungsgeschwindigkeit von Fehlanpassungsversetzungen. Der Prozess der Nukleation von Versetzungen wurde durch die heterogene Nukleation an Einzeldefekten, deren Vorhandensein stark vom Epitaxieverfahren abhängt, dominiert. Dies wurde an einer Vielzahl von Proben verifiziert. Die Aktivität der einzelnen Nukleationszentren ist sehr unterschiedlich und lässt sich nur durch ein "Spektrum" von Nukleationszentren unterschiedlicher "Stärke" erklären. Starke Nukleationszentren können bis ca 100 Versetzungen, die zusammen Versetzungsbündel bilden, induzieren. Die Nukleationszentren werden sequentiell aktiviert. Es wurde gezeigt, dass Laserbeschuss schwache Zentren "aktiviert" und eine damit eine sehr gleichmäßige Relaxation von Schichten möglich wird. Durch in-situ-Beobachtungen konnte erstmals röntgentopografisch der Prozess des Versetzungsblockierens und des Quergleitens an sich kreuzenden Versetzungsbündeln über einen großen Skalenbereich verfolgt werden.Es konnte gezeigt werden, dass die Zweikristall-Röntgentopografie ein geeignetes Verfahren zur Untersuchung großer teilrelaxierter Proben mit extrem geringem Relaxationsgrad darstellt. / The deposition of metastable layers by means of heteroepitaxy is gaining more and more in importance in current solid state physics, especially if it is possible to deposit layers with rather different lattice parameters in perfect quality, necessary for the fabrication of electronic devices and semiconductor technology. The use of such layer systems enables to controlling specific material properties, for example the mobility of charge carriers and the energy gap. Within the framework of this work the early stages of the relaxation of very thin strained silicon-germanium layers deposited onto (001)silicon substrates were investigated. Such metastable layers create so-called misfit dislocations at annealing. The formation of dislocations in nearly perfect materials as silicon in macroscopic extension presumes a nucleation process and the propagation by means of gliding and/or climbing of the threading segments. These processes were investigated systematically at silicon-germanium-films on silicon substrates as a modelsystem. Very low densities of dislocations were investigated by in-situ and ex-situ X-ray topography as well as high resolution X-ray diffractometry. Plane-view transmission electron microscopy and atomic force microscopy complemented the experiments in order to study the behavior at the dislocation crossings at smaller length scale. Dislocation glide rates were measured at different concentrations of impurities (e.g. carbon) in the sample and for different growth techniques. There was no significant influence of the epitaxial method on the glide velocities but a very low amount of oxygen decreases the the velocity effectively. A low density of carbon (0,1%) wich occcupy silicon or germanium lattice sites had no significant influence on the propagation of dislocations. The process of nucleation is dominated by heterogeneous nucleation as was verified at a large number of samples and varies in detail for different epitaxial depostion methods. The activity of single nucleation centers is rather different and can interpreted with a "spectrum" of centers of different strength. A strong center can induce as many as 100 dislocations. These dislocations form bunches of dislocations as was observed with X-ray topography. The centers are sequentially activated. This was demonstrated at samples where a pretreatment with an excimer laser "activated" weak centers thereby inducing a comparatively homogeneous distribution of dislocations. By means of in-situ synchrotron radiation experiments the prozesses of propagation, blocking and crossslip could be observed for the first time in large areas of samples. The double crystal X-ray topography is a suitable method to observe these processes in comparatively large samples with a very low degree of relaxation.

Page generated in 0.126 seconds