• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 5
  • 2
  • Tagged with
  • 26
  • 26
  • 26
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Neural Network Approach for Predicting the Failure of Turbine Components

Bano, Nafisa January 2013 (has links)
Turbine components operate under severe loading conditions and at high and varying temperatures that result in thermal stresses in the presence of temperature gradients created by hot gases and cooling air. Moreover, static and cyclic loads as well as the motion of rotating components create mechanical stresses. The combined effect of complex thermo-mechanical stresses promote nucleation and propagation of cracks that give rise to fatigue and creep failure of the turbine components. Therefore, the relationship between thermo-mechanical stresses, chemical composition, heat treatment, resulting microstructure, operating temperature, material damage, and potential failure modes, i.e. fatigue and/or creep, needs to be well understood and studied. Artificial neural networks are promising candidate tools for such studies. They are fast, flexible, efficient, and accurate tools to model highly non-linear multi-dimensional relationships and reduce the need for experimental work and time-consuming regression analysis. Therefore, separate neural network models for γ’ precipitate strengthened Ni based superalloys have been developed for predicting the γ’ precipitate size, thermal expansion coefficient, fatigue life, and hysteresis energy. The accumulated fatigue damage is then estimated as the product of hysteresis energy and fatigue life. The models for γ’ precipitate size, thermal expansion coefficient, and hysteresis energy converge very well and match experimental data accurately. The fatigue life proved to be the most challenging aspect to predict, and fracture mechanics proved to potentially be a necessary supplement to neural networks. The model for fatigue life converges well, but relatively large errors are observed partly due to the generally large statistical variations inherent to fatigue life. The deformation mechanism map for 1.23Cr-1.2Mo-0.26V rotor steel has been constructed using dislocation glide, grain boundary sliding, and power law creep rate equations. The constructed map is verified with experimental data points and neural network results. Although the existing set of experimental data points for neural network modeling is limited, there is an excellent match with boundaries constructed using rate equations which validates the deformation mechanism map.
12

An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

Phung-on, Isaratat 19 September 2007 (has links)
No description available.
13

A new generation of high temperature oxygen sensors

Spirig, John Vincent 19 September 2007 (has links)
No description available.
14

Influence de la microstruture sur le glissement intergranulaire lors du fluage d'un superalliage pour disques / Influence of microstructure on grain boundary sliding during creep of a turbine disc superalloy

Thibault, Kevin 19 December 2012 (has links)
L'objectif de cette thèse est de mettre en évidence l'influence de la microstructure initiale sur le glissement intergranulaire lors du fluage à haute température d'un superalliage polycristallin à base de nickel. Dans ce but, plusieurs microstructures sont obtenues à partir de la microstructure de référence de l'alliage NR6, par application de traitements thermiques spécifiques. L'influence des paramètres microstructuraux sur les déformations locales est ensuite étudiée à l'aide d'une technique de microextensométrie couplée à une analyse par diffraction des électrons rétrodiffusés. Il est ainsi possible de relier microstructure, déformations locales et comportement macroscopique en fluage. Pour la microstructure de référence de l'alliage NR6, la déformation opère principalement par cisaillement des phases γ et γ'. Ce mécanisme est favorable au glissement intergranulaire. L'absence de précipités tertiaires de phase γ' favorise le contournement des précipités secondaires par les dislocations. Ceci permet de réduire le glissement intergranulaire mais est également néfaste pour la résistance à la déformation de l'alliage. La présence de joints de grains dentelés augmente la résistance au glissement intergranulaire mais diminue la résistance à la déformation intragranulaire en favorisant le contournement des précipités. Ainsi la résistance globale à la déformation n'est pas affectée. Enfin, l'augmentation de la taille de grains n'a d'influence ni sur les mécanismes de déformation mis en jeu ni sur l'amplitude du glissement. Cependant, la fraction moins élevée de joints de grains induit une diminution de la contribution du glissement intergranulaire à la déformation globale. / The aim of this study is to highlight the influence of initial microstructure on grain boundary sliding during high-temperature creep of a polycrystalline nickel-based superalloy. To reach this goal, several microstructures are produced from the reference microstructure of NR6 alloy by adequate heat treatments. The influence of microstructural parameters on local deformations is then studied thanks to a microextensometry technique coupled with an electron back-scattered diffraction analysis. It thereby enables linking microstructure, local deformations and macroscopic creep behaviour. In the case of NR6 alloy reference microstructure, deformation occurs mainly by γ and γ' phases cutting by dislocations. This mechanism is grain boundary sliding-favourable. The absence of tertiary γ' phase precipitates promotes secondary precipitates bypassing by dislocations. This results in a reduction of grain boundary sliding but is also harmful to the alloy creep resistance. Grain boundary serration improves grain boundary sliding resistance but diminishes intragranular deformation resistance by favouring precipitate bypassing. Then global deformation resistance is not changed. Finally, grain size increase has influence neither on activated deformation mechanisms nor on sliding amplitude. However, the decrease of grain boundary fraction leads to a reduction of grain boundary sliding contribution to overall strain.
15

Superplastic Deformation Behaviour Of AZ31 Magnesium Alloy

Panicker, Radhakrishna M R 08 1900 (has links)
Superplastic deformation behaviour of AZ31 magnesium alloy having initial grain sizes 8, 11 and 17μm alloy was investigated at 673 K with initial strain rates ranging from 1x10-2 to 1x10-4 s-1. Mechanical data on fine grained AZ31 alloy with grain sizes 8 and 11 μm indicated a transition in deformation mechanisms. The strain rate sensitivity, m ~ 0.5 at low strain rates and m ~ 0.2 at high strain rates which suggest GBS and dislocation slip as the corresponding deformation mechanism. For coarse grained alloy having grain size 17 μm, m < 0.4 at low strain rates and ~ 0.2 at high strain rates, suggesting dislocation slip as the deformation mechanism. A superplastic maximum elongation of ~ 475% was observed for 8 μm alloy at low rate of deformation. At high strain rates, the deformation was non-superplastic for fine and coarse grained alloys. The contribution of GBS to total strain, ξ in the low strain rate regime was evaluated to be 50 – 60%, for both low and high elongation. EBSD studies indicated the maintenance of high fraction of high angle boundaries up to true strain of ~ 0.88 and a reduction in texture intensity. These observations show GBS as the dominant deformation mechanism for fine grained alloy. At higher strain rate, ξ was estimated to be 30%. Fraction of high angle boundaries was reduced and [0001] direction of grains was found to be rotated towards the tensile direction, suggesting dislocation slip. Based on mechanical data, flow localization and cavitation studies; the failure of the material during high rates of deformation was mainly due to flow localization. Extensive cavitation along with more uniform flow at a lower strain rate regime suggests the failure due to the cavity interlinkage and coalescence. The present GBS data are consistent with the previous relevant data in fine grained Mg based alloys in the low strain rate regime. The GBS data obtained in the dislocation regime in the present study are also in agreement with that of the previous investigations in fine grained Mg alloys.
16

Deformation Mechanisms and Microstructure Evolution in HfNbTaTiZr High Entropy Alloy during Thermo-mechanical Processing at Elevated Temperatures / HfNbTaTiZrハイエントロピー合金の高温加工熱処理における変形機構と組織形成

RAJESHWAR, REDDY ELETI 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21767号 / 工博第4584号 / 新制||工||1714(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 乾 晴行, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
17

High temperature performance of materials for future power plants

He, Junjing January 2016 (has links)
Increasing energy demand leads to two crucial problems for the whole society. One is the economic cost and the other is the pollution of the environment, especially CO2 emissions. Despite efforts to adopt renewable energy sources, fossil fuels will continue to dominate. The temperature and stress are planned to be raised to 700 °C and 35 MPa respectively in the advanced ultra-supercritical (AUSC) power plants to improve the operating efficiency. However, the life of the components is limited by the properties of the materials. The aim of this thesis is to investigate the high temperature properties of materials used for future power plants. This thesis contains two parts. The first part is about developing creep rupture models for austenitic stainless steels. Grain boundary sliding (GBS) models have been proposed that can predict experimental results. Creep cavities are assumed to be generated at intersection of subboundaries with subboundary corners or particles on a sliding grain boundary, the so called double ledge model. For the first time a quantitative prediction of cavity nucleation for different types of commercial austenitic stainless steels has been made. For growth of creep cavities a new model for the interaction between the shape change of cavities and creep deformation has been proposed. In this constrained growth model, the affected zone around the cavities has been calculated with the help of FEM simulation. The new growth model can reproduce experimental cavity growth behavior quantitatively for different kinds of austenitic stainless steels. Based on the cavity nucleation models and the new growth models, the brittle creep rupture of austenitic stainless steels has been determined. By combing the brittle creep rupture with the ductile creep rupture models, the creep rupture strength of austenitic stainless steels has been predicted quantitatively. The accuracy of the creep rupture prediction can be improved significantly with combination of the two models. The second part of the thesis is on the fatigue properties of austenitic stainless steels and nickel based superalloys. Firstly, creep, low cycle fatigue (LCF) and creep-fatigue tests have been conducted for a modified HR3C (25Cr20NiNbN) austenitic stainless steel. The modified HR3C shows good LCF properties, but lower creep and creep-fatigue properties which may due to the low ductility of the material. Secondly, LCF properties of a nickel based superalloy Haynes 282 have been studied. Tests have been performed for a large ingot. The LCF properties of the core and rim positions did not show evident differences. Better LCF properties were observed when compared with two other low γ’ volume fraction nickel based superalloys. Metallography study results demonstrated that the failure mode of the material was transgranular. Both the initiation and growth of the fatigue cracks were transgranular. / <p>QC 20160905</p>
18

Identification of deformation mechanisms during bi-axial straining of superplastic AA5083 material

Fowler, Rebecca M. 06 1900 (has links)
Approved for public release, distribution is unlimited / This study evaluated dome test samples of a superplastic AA5083 aluminum alloy deformed at nominally constant strain rates under biaxial strain conditions. Dome test samples resulted from gas-pressure forming of sheet material; for this study, samples were deformed at strain rates corresponding either to grain boundary sliding or dislocation creep control of deformation. Orientation Imaging Microscopy was utilized to determine texture development, grain size and grain-to-grain misorientation angle distributions for locations located along a line of latitude of the dome samples. The goal was to identify the location of the transition from grain boundary sliding to dislocation creep. Grain boundary sliding, which dominates at lower strain rates, can be recognized by a randomized texture and a higher concentration of high disorientation angles. Dislocation creep, which dominates at higher strain rates, is characterized by fiber texture formation and development of a peak at lower angles in the grain-to-grain misorientation angle distribution. / Ensign, United States Navy
19

In Situ Transmission Electron Microscopy Characterization of Nanomaterials

Lee, Joon Hwan 1977- 14 March 2013 (has links)
With the recent development of in situ transmission electron microscopy (TEM) characterization techniques, the real time study of property-structure correlations in nanomaterials becomes possible. This dissertation reports the direct observations of deformation behavior of Al2O3-ZrO2-MgAl2O4 (AZM) bulk ceramic nanocomposites, strengthening mechanism of twins in YBa2Cu3O7-x (YBCO) thin film, work hardening event in nanocrystalline nickel and deformation of 2wt% Al doped ZnO (AZO) thin film with nanorod structures using the in situ TEM nanoindentation tool. The combined in situ movies with quantitative loading-unloading curves reveal the deformation mechanism of the above nanomaterial systems. At room temperature, in situ dynamic deformation studies show that the AZM nanocomposites undergo the deformation mainly through the grain-boundary sliding and rotation of small grains, i.e., ZrO2 grains, and some of the large grains, i.e., MgAl2O4 grains. We observed both plastic and elastic deformations in different sample regions in these multi-phase ceramic nanocomposites at room temperature. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of YBCO films from the directions perpendicular and parallel to the twin interfaces. Hardness measured perpendicular to twin interfaces is ~50% and 40% higher than that measured parallel to twin interfaces, by ex situ and in situ, respectively. By using an in situ nanoindentation tool inside TEM, dynamic work hardening event in nanocrystalline nickel was directly observed. During stain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded during in situ experiments show an increase of yield strength from 1.64 to 2.29 GPa during multiple loading-unloading cycles. In situ TEM nanoindentation has been conducted to explore the size dependent deformation behavior of two different types (type I: ~ 0.51 of width/length ratio and type II: ~ 088 ratio) of AZO nanorods. During the indentation on type I nanord structure, annihilation of defects has been observed which is caused by limitation of the defect activities by relatively small size of the width. On the other hand, type II nanorod shows dislocation activities which enhanced the grain rotation under the external force applied on more isotropic direction through type II nanorod.
20

Effect of Equal Channel Angular Extrusion on the Microstructure Evolution and Mechanical Properties of Al-5wt%Zn Alloy

Liao, Hung-Ya 19 July 2012 (has links)
In this work, ultrafine-grained (UFG) Al-5wt%Zn alloy was produced by equal channel angular extrusion (ECAE). The microstructure evolution during ECAE and the mechanical properties of the UFG Al-Zn alloy were investigated. In order to identify the effect of Zn in the Al-Zn alloy, pure aluminum (4N, 99.99%) was also studied for comparison. The grains of the Al-Zn alloy could be refined effectively by increasing the ECAE passes. However, as the ECAE passes increased, the microhardness increased initially but maintained constant after 4 ECAE passes. The dislocation density within grain interior was decreased gradually with increasing ECAE passes. After being processed to twelve ECAE passes, the UFG Al-Zn alloy exhibited 53.7% of the grain boundaries being high angle grain boundaries (HAGBs). The UFG Al-5wt%Zn alloy exhibits superior tensile strength and elongation as compared with pure aluminum fabricated by the same ECAE process. Experimental results indicated that adding Zn in aluminum alloy could provide solid-solution strengthening and considerable enhancement in tensile ductility which might be related to an improved post-uniform elongation (PUE). The strain rate sensitivity (SRS) of the UFG Al-Zn alloy also increased with increasing the ECAE passes, which might be related to the fine grain size and the contribution of grain boundary sliding. The activation volume of the UFG Al-Zn alloy was in the range of 32b3~76b3, and the pure aluminum was in the range of 57b3~122b3. Because of the small value of the activation volume, it is suggested that the controlling mechanism for dislocation glide in the UFG Al-Zn alloy might be related to the generation and absorption of dislocations in grain boundary, as well as the interaction between dislocations and solute Zn atoms in the grain boundary.

Page generated in 0.0872 seconds