• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation micromécanique et étude expérimentale de l'endommagement par fluage des aciers austénitiques inoxydables / Micromechanical simulation and experimental investigation of the creep damage of stainless austenitic steels

Huang, Liang 06 December 2017 (has links)
L’acier austénitique inoxydable 316L(N) et l’alliage 800 sont des candidats potentiels pour des éléments de structures des réacteurs nucléaires de génération IV. Les durées de vie envisagées peuvent atteindre 60 années sous chargement de fluage. Il est donc nécessaire de caractériser et de prendre en compte les mécanismes d’endommagement de fluage afin de proposer des prédictions de durées de vie. Le modèle de Riedel est basé sur la germination continue de cavités (loi de Dyson) et la croissance de cavités par diffusion des lacunes le long des joints de grains. Les durées de vie en fluage sont prédites par la combinaison des modèles de striction (court terme) et de Riedel (long terme), en accord avec les données expérimentales. Aucun paramètre ajusté n’a été utilisé dans le modèle de Riedel. Cependant, le préfacteur de la loi de Dyson devait être mesuré expérimentalement.Les cavités se forment aux interfaces entre particules de phase secondaire intergranulaires et matrice austénitique. Grâce à des calculs par éléments finis cristallins (logiciel Cast3M), les concentrations de contraintes aux interfaces matrice-précipité ont été calculées en considérant les hétérogénéités microstructurales. Les résultats des calculs nous permettent de proposer une formule multiplicative visant à calculer la distribution des contraintes normales d’interface, en prenant en compte toutes les hétérogénéités microstructurales. En appliquant un critère en contrainte et un critère énergétique de rupture, le préfacteur de la loi de Dyson prédit est du même ordre de grandeur que celui mesuré expérimentalement. Notre travail conduit à proposer un fondement théorique de la loi de Dyson. / Austenitic stainless steel 316L (N) and alloy 800 are potential candidates for structural components of Generation IV nuclear reactors. Their in-service lifetime may be extended up to 60 years under creep condition. It is thus necessary to characterize the dominant damage mechanisms during creep in order to propose long term lifetime predictions. The Riedel model is based on continuous cavity nucleation (the Dyson law) and cavity growth by vacancy diffusion along grain boundaries. The creep lifetimes are predicted by the combination of a necking (short-term) and the Riedel (long-term) models, agree well with numerous experimental data. No adjusted parameter was used as applying in the Riedel model. However, the Dyson law prefactor is evaluated experimentally. Cavities are produced at the interfaces of intergranular second phase particles and austenitic matrix. Using crystal viscoplasticity finite element computations (Cast3M software), the stress fields along the particle-matrix interfaces are calculated by considering the main microstructure heterogeneities. The Finite element calculation results allow us to propose a multiplication formula to compute the distribution of interface normal stresses, accounting for all microstructural heterogeneities. Applying an interface fracture stress criterion and a simplified energy balance equation, the predicted Dyson law prefactor is close to measured values. Our work provides a theoretical explanation of the phenomenological law of Dyson.
2

High temperature performance of materials for future power plants

He, Junjing January 2016 (has links)
Increasing energy demand leads to two crucial problems for the whole society. One is the economic cost and the other is the pollution of the environment, especially CO2 emissions. Despite efforts to adopt renewable energy sources, fossil fuels will continue to dominate. The temperature and stress are planned to be raised to 700 °C and 35 MPa respectively in the advanced ultra-supercritical (AUSC) power plants to improve the operating efficiency. However, the life of the components is limited by the properties of the materials. The aim of this thesis is to investigate the high temperature properties of materials used for future power plants. This thesis contains two parts. The first part is about developing creep rupture models for austenitic stainless steels. Grain boundary sliding (GBS) models have been proposed that can predict experimental results. Creep cavities are assumed to be generated at intersection of subboundaries with subboundary corners or particles on a sliding grain boundary, the so called double ledge model. For the first time a quantitative prediction of cavity nucleation for different types of commercial austenitic stainless steels has been made. For growth of creep cavities a new model for the interaction between the shape change of cavities and creep deformation has been proposed. In this constrained growth model, the affected zone around the cavities has been calculated with the help of FEM simulation. The new growth model can reproduce experimental cavity growth behavior quantitatively for different kinds of austenitic stainless steels. Based on the cavity nucleation models and the new growth models, the brittle creep rupture of austenitic stainless steels has been determined. By combing the brittle creep rupture with the ductile creep rupture models, the creep rupture strength of austenitic stainless steels has been predicted quantitatively. The accuracy of the creep rupture prediction can be improved significantly with combination of the two models. The second part of the thesis is on the fatigue properties of austenitic stainless steels and nickel based superalloys. Firstly, creep, low cycle fatigue (LCF) and creep-fatigue tests have been conducted for a modified HR3C (25Cr20NiNbN) austenitic stainless steel. The modified HR3C shows good LCF properties, but lower creep and creep-fatigue properties which may due to the low ductility of the material. Secondly, LCF properties of a nickel based superalloy Haynes 282 have been studied. Tests have been performed for a large ingot. The LCF properties of the core and rim positions did not show evident differences. Better LCF properties were observed when compared with two other low γ’ volume fraction nickel based superalloys. Metallography study results demonstrated that the failure mode of the material was transgranular. Both the initiation and growth of the fatigue cracks were transgranular. / <p>QC 20160905</p>

Page generated in 0.1103 seconds