• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Equal Channel Angular Extrusion on the Microstructure Evolution and Mechanical Properties of Al-5wt%Zn Alloy

Liao, Hung-Ya 19 July 2012 (has links)
In this work, ultrafine-grained (UFG) Al-5wt%Zn alloy was produced by equal channel angular extrusion (ECAE). The microstructure evolution during ECAE and the mechanical properties of the UFG Al-Zn alloy were investigated. In order to identify the effect of Zn in the Al-Zn alloy, pure aluminum (4N, 99.99%) was also studied for comparison. The grains of the Al-Zn alloy could be refined effectively by increasing the ECAE passes. However, as the ECAE passes increased, the microhardness increased initially but maintained constant after 4 ECAE passes. The dislocation density within grain interior was decreased gradually with increasing ECAE passes. After being processed to twelve ECAE passes, the UFG Al-Zn alloy exhibited 53.7% of the grain boundaries being high angle grain boundaries (HAGBs). The UFG Al-5wt%Zn alloy exhibits superior tensile strength and elongation as compared with pure aluminum fabricated by the same ECAE process. Experimental results indicated that adding Zn in aluminum alloy could provide solid-solution strengthening and considerable enhancement in tensile ductility which might be related to an improved post-uniform elongation (PUE). The strain rate sensitivity (SRS) of the UFG Al-Zn alloy also increased with increasing the ECAE passes, which might be related to the fine grain size and the contribution of grain boundary sliding. The activation volume of the UFG Al-Zn alloy was in the range of 32b3~76b3, and the pure aluminum was in the range of 57b3~122b3. Because of the small value of the activation volume, it is suggested that the controlling mechanism for dislocation glide in the UFG Al-Zn alloy might be related to the generation and absorption of dislocations in grain boundary, as well as the interaction between dislocations and solute Zn atoms in the grain boundary.
2

Mechanism of failure by hydrogen-induced cracking in pipeline steels

2015 August 1900 (has links)
Pipeline steels that carry oil and natural gas in severe environments suffer from two important modes of failure: stress corrosion cracking (SCC) and hydrogen-induced cracking (HIC). The SCC has been studied extensively in the literature; however, HIC phenomenon in pipeline steels is less investigated by researchers. Nevertheless, HIC is recognized as the most important damage mode in sour environment. Hydrogen atoms produced due to surface corrosion of the steel diffuse into it through microstructural defects. When a critical amount of hydrogen is accumulated in such defects, HIC cracks initiate and propagate. The main objectives of this thesis are to find the HIC crack nucleation and propagation sites, evaluate a role of texture and grain boundary character distribution in crack growth and finally establish the effect of different microstructural parameters contributing to the HIC related failure in pipeline steel. In this thesis, HIC standard test and electrochemical hydrogen-charging experiments were used to induce HIC cracks in pipeline steels. HIC cracks at the cross section of tested samples were observed using scanning electron microscope (SEM). The SEM observations clearly indicate that the investigated X60 and X70 steels are susceptible to HIC while the X60SS steel showed a higher resistance to HIC. This experiment also proved that the X70 steel has higher susceptibility to HIC than the other investigated steel. Energy dispersive spectroscopic (EDS) analyses indicated that two types of inclusion namely manganese sulfide and carbonitiride precipitates serve as crack nucleation sites. HIC cracks were observed to propagate at the center of cross section where the segregation of some elements such as carbon and manganese occurred. Moreover, two other experiments were carried out in order to evaluate the capability of pipeline steels for hydrogen-trapping. The first test, hydrogen-permeation experiment, showed that all pipeline steel specimens, such as X70, X60 and X60SS steels, contain both reversible and irreversible hydrogen traps. However, the density of traps at the center of cross section was higher than other regions in all tested specimens. The hydrogen-discharging experiments also showed that all specimens keep a considerable amount of hydrogen inside their traps. The hydrogen traps, based on their binding energy with the metal matrix, are categorized as reversible (weak) and irreversible (strong) traps and the roles of each type of traps are explained. Electron backscatter diffraction (EBSD) measurements were done along the HIC crack in X70 steel after standard HIC test. The results showed that the {100} texture was strong while the {111} texture was weak. Some special texture components, such as the {110}, {332} and {112}, were observed after the HIC crack-stoppage. EBSD results also documented that fine grain colonies were prone to intergranular HIC crack propagation and IPF and PF, calculated in both sides of HIC cracks, showed the preferences of ND||<100> orientation. Both susceptible X60 and non-susceptible X60SS steel to HIC were compared based on the EBSD results. It was observed that the high amount of recrystallization fraction with no stored energy is one of the main reasons for a higher HIC resistance of X60SS steel to HIC. Moreover, Kernel Average Misorientation (KAM) data showed that the deformation is more concentrated in the as-received and HIC tested X60 specimens. The effect of hydrogen-charging during tensile/fatigue loading of X60SS steel was studied and it was observed that some HIC cracks at the cross section of X60SS steel were appeared after hydrogen-charging at stresses below the yield stress. Experiments were carried out to understand the effect of cold-rolling and annealing on HIC susceptibility in pipeline steels. The results documented that the {100} dominant texture is more pronounced in 50% and 90% cold-rolled and annealed specimens. The effect of different factors such as KAM degree and recrystallized fraction affecting HIC susceptibility on cold-rolled and annealed specimens was investigated. The obtained results showed that the cold-rolling and annealing process may not be considered as an effective method to increase HIC resistance in pipeline steels.

Page generated in 0.5569 seconds