• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 26
  • 6
  • 6
  • 4
  • 4
  • 3
  • Tagged with
  • 145
  • 145
  • 70
  • 57
  • 26
  • 26
  • 24
  • 23
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Coding Schemes for Physical Layer Network Coding Over a Two-Way Relay Channel

Hern, Brett Michael 16 December 2013 (has links)
We consider a two-way relay channel in which two transmitters want to exchange information through a central relay. The relay observes a superposition of the trans- mitted signals from which a function of the transmitted messages is computed for broadcast. We consider the design of codebooks which permit the recovery of a function at the relay and derive information-theoretic bounds on the rates for reliable decoding at the relay. In the spirit of compute-and-forward, we present a multilevel coding scheme that permits reliable computation (or, decoding) of a class of functions at the relay. The function to be decoded is chosen at the relay depending on the channel realization. We define such a class of reliably computable functions for the proposed coding scheme and derive rates that are universally achievable over a set of channel gains when this class of functions is used at the relay. We develop our framework with general modulation formats in mind, but numerical results are presented for the case where each node transmits using 4-ary and 8-ary modulation schemes. Numerical results demonstrate that the flexibility afforded by our proposed scheme permits substantially higher rates than those achievable by always using a fixed function or considering only linear functions over higher order fields. Our numerical results indicate that it is favorable to allow the relay to attempt both compute-and-forward and decode-and-forward decoding. Indeed, either method considered separately is suboptimal for computation over general channels. However, we obtain a converse result when the transmitters are restricted to using identical binary linear codebooks generated uniformly at random. We show that it is impossible for this code ensemble to achieve any rate higher than the maximum of the rates achieved using compute-and-forward and decode-and-forward decoding. Finally, we turn our attention to the design of low density parity check (LDPC) ensembles which can practically achieve these information rates with joint-compute- and-forward message passing decoding. To this end, we construct a class of two-way erasure multiple access channels for which we can exactly characterize the performance of joint-compute-and-forward message passing decoding. We derive the processing rules and a density evolution like analysis for several classes of LDPC ensembles. Utilizing the universally optimal performance of spatially coupled LDPC ensembles with message passing decoding, we show that a single encoder and de- coder with puncturing can achieve the optimal rate region for a range of channel parameters.
62

Performance analysis of linear block codes over the queue-based channel

Al-Lawati, Haider 29 August 2007 (has links)
Most coding schemes used in today's communication systems are designed for memoryless channels. These codes break down when they are transmitted over channels with memory, which is in fact what real-world channels look like since errors often occur in bursts. Therefore, these systems employ interleaving to spread the errors so that the channel looks more or less memoryless (for the decoder) at the cost of added delay and complexity. In addition, they fail to exploit the memory of the channel which increases the capacity for a wide class of channels. On the other hand, most channels with memory do not have simple and mathematically tractable models, making the design of suitable channel codes more challenging and possibly not practical. Recently, a new model has been proposed known as the queue-based channel (QBC) which is simple enough for mathematical analysis and complex enough for modeling wireless fading channels. In this work, we examine the performance of linear block codes when transmitted over this channel. We break down our focus into two parts. First, we investigate the maximum likelihood decoding of binary linear block codes over the QBC. Since it is well known that for binary symmetric memoryless channels, maximum likelihood decoding reduces to minimum Hamming distance decoding, our objective here is to explore whether there exists a similar relation between these two decoding schemes when the channel does have memory. We give a partial answer for the case of perfect and quasi perfect codes. Next, we study Reed-Solomon (RS) codes and analyze their performance when transmitted over the QBC under the assumption of bounded distance decoding. In particular, we examine the two interleaving strategies encountered when dealing with non-binary codes over a binary input channel; namely, symbol interleaving and bit interleaving. We compare these two interleaving schemes analytically and show that symbol interleaving always outperforms bit interleaving. Non-interleaved Reed-Solomon codes are also covered. We derive some useful expressions pertaining to the calculation of the probability of codeword error. The performance of non-interleaved RS codes are compared to that of interleaved ones for the simplest scenario of the QBC which is the additive (first-order) Markov noise channel with non-negative noise correlation. / Thesis (Master, Mathematics & Statistics) -- Queen's University, 2007-08-20 18:13:29.737
63

Robust Lossy Source Coding for Correlated Fading Channels

SHAHIDI, SHERVIN 28 September 2011 (has links)
Most of the conventional communication systems use channel interleaving as well as hard decision decoding in their designs, which lead to discarding channel memory and soft-decision information. This simplification is usually done since the complexity of handling the memory or soft-decision information is rather high. In this work, we design two lossy joint source-channel coding (JSCC) schemes that do not use explicit algebraic channel coding for a recently introduced channel model, in order to take advantage of both channel memory and soft-decision information. The channel model, called the non-binary noise discrete channel with queue based noise (NBNDC-QB), obtains closed form expressions for the channel transition distribution, correlation coefficient, and many other channel properties. The channel has binary input and $2^q$-ary output and the noise is a $2^q$-ary Markovian stationary ergodic process, based on a finite queue, where $q$ is the output's soft-decision resolution. We also numerically show that the NBNDC-QB model can effectively approximate correlated Rayleigh fading channels without losing its analytical tractability. The first JSCC scheme is the so called channel optimized vector quantizer (COVQ) and the second scheme consists of a scalar quantizer, a proper index assignment, and a sequence maximum a posteriori (MAP) decoder, designed to harness the redundancy left in the quantizer's indices, the channel's soft-decision output, and noise time correlation. We also find necessary and sufficient condition when the sequence MAP decoder is reduced to an instantaneous symbol-by-symbol decoder, i.e., a simple instantaneous mapping. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2011-09-25 19:43:28.785
64

Low Density Parity Check Code Designs For Distributed Joint Source-Channel Coding Over Multiple Access Channels

Shahid, Iqbal 23 August 2013 (has links)
The efficient and reliable communication of data from multiple sources to a single receiver plays an important role in emerging applications such as wireless sensor networks. The correlation among observations picked-up by spatially distributed sensors in such a network can be exploited to enhance the efficiency and reliability of communication. In particular, information theory shows that optimal communication of information from correlated sources requires distributed joint source-channel (DJSC) coding. This dissertation develops new approaches to designing DJSC codes based on low density parity check (LDPC) codes. The existence of low complexity code optimization algorithms and decoding algorithms make these codes ideal for joint optimization and decoding of multiple codes operating on correlated sources. The well known EXIT analysis-based LDPC code optimization method for channel coding in single-user point-to-point systems is extended to the optimization of two-user LDPC codes for DJSC coding in multi-access channels (MACs) with correlated users. Considering an orthogonal MAC with two correlated binary sources, an asymptotically optimal DJSC code construction capable of achieving any rate-pair in the theoretically-achievable two-user rate-region is presented. A practical approach to realizing this scheme using irregular LDPC codes is then developed. Experimental results are presented which demonstrate that the proposed codes can approach theoretical bounds when the codeword length is increased. For short codeword length and high inter-source correlation, these DJSC codes are shown to significantly outperform separate source and channel codes. Next, the DJSC code design for the transmission of a pair of correlated binary sources over a Gaussian MAC (GMAC) is investigated. The separate source and channel coding is known to be sub-optimal in this case. For the optimization of a pair of irregular LDPC codes, the EXIT analysis for message passing in a joint factor-graph decoder is analyzed, and an approach to modeling the probability density functions of messages associated with graph nodes which represent the inter-source dependence is proposed. Simulation results show that, for sufficiently large codeword lengths and high inter-source correlation, the proposed DJSC codes for GMAC can achieve rates higher than the theoretical upper bound for separate source and channel coding.
65

Adaptive Joint Source-Channel Coding of Real-Time Multimedia for Cognitive Radio

Kedia, Aditya 02 September 2014 (has links)
Radio spectrum has become a scarce and priced resource due to the rapid growth of wireless networks. However, recent surveys conducted by the FCC indicate that a large part of the allotted frequency spectrum lies unused. Cognitive radio systems, built on the software defined radios, allow the efficient usage of these unused frequency spectrum. Cognitive radio systems can be modeled as a multiple access channel in which certain users have the priority (primary users) while others (cognitive or secondary users) are allowed to access the channels without causing any interference to the primary users. However a secondary user’s transmissions not only encounter high levels of uncertainty and variability in the number of channels available to them, but they also suffer data losses if a primary user activity occurs. Under such rigid constraints, the reliable transmission of real time multimedia of a secondary user with an acceptable quality of service becomes challenging. Multimedia transmission in a cognitive system requires channel adaptive source and channel coding schemes. In order to address this problem, this thesis investigates and develops a novel joint source-channel coding (JSCC) approach. The proposed JSCC allows the dynamic generation of codes, which minimizes the end-to-end distortion. This JSCC is based on quantized frame expansions to introduce redundancy into transmitted data. An algorithm has been developed to determine the optimal trade-off between redundancy and quantization rate, under a constraint on channel capacity. The proposed approach does not require the communication of any overhead data between the transmitter and receiver. When compared to codes commonly used to deal with packet losses, simulation results indicate that the proposed JSCC can achieve lower distortion for secondary user’s transmissions in cognitive radio systems.
66

Low Density Parity Check Code Designs For Distributed Joint Source-Channel Coding Over Multiple Access Channels

Shahid, Iqbal 23 August 2013 (has links)
The efficient and reliable communication of data from multiple sources to a single receiver plays an important role in emerging applications such as wireless sensor networks. The correlation among observations picked-up by spatially distributed sensors in such a network can be exploited to enhance the efficiency and reliability of communication. In particular, information theory shows that optimal communication of information from correlated sources requires distributed joint source-channel (DJSC) coding. This dissertation develops new approaches to designing DJSC codes based on low density parity check (LDPC) codes. The existence of low complexity code optimization algorithms and decoding algorithms make these codes ideal for joint optimization and decoding of multiple codes operating on correlated sources. The well known EXIT analysis-based LDPC code optimization method for channel coding in single-user point-to-point systems is extended to the optimization of two-user LDPC codes for DJSC coding in multi-access channels (MACs) with correlated users. Considering an orthogonal MAC with two correlated binary sources, an asymptotically optimal DJSC code construction capable of achieving any rate-pair in the theoretically-achievable two-user rate-region is presented. A practical approach to realizing this scheme using irregular LDPC codes is then developed. Experimental results are presented which demonstrate that the proposed codes can approach theoretical bounds when the codeword length is increased. For short codeword length and high inter-source correlation, these DJSC codes are shown to significantly outperform separate source and channel codes. Next, the DJSC code design for the transmission of a pair of correlated binary sources over a Gaussian MAC (GMAC) is investigated. The separate source and channel coding is known to be sub-optimal in this case. For the optimization of a pair of irregular LDPC codes, the EXIT analysis for message passing in a joint factor-graph decoder is analyzed, and an approach to modeling the probability density functions of messages associated with graph nodes which represent the inter-source dependence is proposed. Simulation results show that, for sufficiently large codeword lengths and high inter-source correlation, the proposed DJSC codes for GMAC can achieve rates higher than the theoretical upper bound for separate source and channel coding.
67

Communication With Reconstruction and Privacy Constraints

Kittichokechai, Kittipong January 2014 (has links)
Communication networks are an integral part of the Internet of Things (IoT) era. They enable endless opportunities for connectivity in a wide range of applications, leading to advances in efficiency of day-to-day life. While creating opportunities, they also incur several new challenges. In general, we wish to design a system that performs optimally well in all aspects. However, there usually exist competing objectives which lead to tradeoffs. In this thesis, driven by several applications, new features and objectives are included into the system model, making it closer to reality and needs. The results presented in this thesis aim at providing insight into the fundamental tradeoff of the system performance which can serve as a guideline for the optimal design of real-world communication systems. The thesis is divided into two parts. The first part considers the aspect of signal reconstruction requirement as a new objective in the source and channel coding problems. In this part, we consider the framework where the quality and/or availability of the side information can be influenced by a cost-constrained action sequence. In the source coding problem, we impose a constraint on the reconstruction sequence at the receiver that it should be reproduced at the sender, and characterize the fundamental tradeoff in the form of the rate-distortion-cost region, revealing the optimal relation between compression rate, distortion, and action cost. The channel coding counterpart is then studied where a reconstruction constraint is imposed on the channel input sequence such that it should be reconstructed at the receiver. An extension to the multi-stage channel coding problem is also considered where inner and outer bounds to the capacity region are given. The result on the channel capacity reveals interesting consequence of imposing an additional reconstruction requirement on the system model which has a causal processing structure. In the second part, we consider the aspect of information security and privacy in lossy source coding problems. The sender wishes to compress the source sequence in order to satisfy a distortion criterion at the receiver, while revealing only limited knowledge about the source to an unintended user. We consider three different aspects of information privacy. First, we consider privacy of the source sequence against the eavesdropper in the problem of source coding with action-dependent side information. Next, we study privacy of the source sequence due to the presence of a public helper in distributed lossy source coding problems. The public helper is assumed to be either a user who provides side information over a public link which can be eavesdropped, or a legitimate user in the network who helps to relay information to the receiver, but may not ignore the information that is not intended for it. Lastly, we take on a new perspective of information privacy in the source coding problem. That is, instead of protecting the source sequence, we are interested in the privacy of the reconstruction sequence with respect to a user in the system. For above settings, we provide the complete characterization of the rate-distortion(-cost)-leakage/equivocation region or corresponding inner and outer bounds for discrete memoryless systems. / <p>QC 20140514</p>
68

Behavioral Mimicry Covert Communication

Ahmadzadeh, Seyed Ali January 2013 (has links)
Covert communication refers to the process of communicating data through a channel that is neither designed, nor intended to transfer information. Traditionally, covert channels are considered as security threats in computer systems and a great deal of attention has been given to countermeasures for covert communication schemes. The evolution of computer networks led the communication community to revisit the concept of covert communication not only as a security threat but also as an alternative way of providing security and privacy to communication networks. In fact, the heterogeneous structure of computer networks and the diversity of communication protocols provide an appealing setting for covert channels. This dissertation is an exploration on a novel design methodology for undetectable and robust covert channels in communication networks. Our new design methodology is based on the concept of behavioral mimicry in computer systems. The objective is to design a covert transmitter that has enough degrees of freedom to behave like an ordinary transmitter and react normally to unpredictable network events, yet it has the ability to modulate a covert message over its behavioral fingerprints in the network. To this end, we argue that the inherent randomness in communication protocols and network environments is the key in finding the proper medium for network covert channels. We present a few examples on how random behaviors in communication protocols lead to discovery of suitable shared resources for covert channels. The proposed design methodology is tested on two new covert communication schemes, one is designed for wireless networks and the other one is optimized for public communication networks (e.g., Internet). Each design is accompanied by a comprehensive analysis from undetectability, achievable covert rate and reliability perspectives. In particular, we introduced turbo covert channels, a family of extremely robust model-based timing covert channels that achieve provable polynomial undetectability in public communication networks. This means that the covert channel is undetectable against any polynomial-time statistical test that analyzes samples of the covert traffic and the legitimate traffic of the network. Target applications for the proposed covert communication schemes are discussed including detailed practical scenarios in which the proposed channels can be implemented.
69

Αρχιτεκτονικές για LDPC αποκωδικοποιητές

Διακογιάννης, Αρτέμιος 16 June 2011 (has links)
Ένα από τα βασικά μειονεκτήματα που παρουσιάζει ο σχεδιασμός και η υλοποίηση LDPC αποκωδικοποιητών είναι η μεγάλη πολυπλοκότητα που παρουσιάζεται σε επίπεδο υλικού εξαιτίας της εσωτερικής διασύνδεσης των μονάδων επεξεργασίας δεδομένων.H αρχιτεκτονική που επιτυγχάνει το μέγιστο επίπεδο παραλληλότητας και κατά συνέπεια είναι πολύ αποδοτική όσον αφορά την ταχύτητα αποκωδικοποίησης, δεν χρησιμοποιείται συχνά εξαιτίας της πολυπλοκότητας του υλικού λόγω των πολλαπλών κυκλωμάτων διασύνδεσης που απαιτεί. Στην παρούσα διπλωματική εργασία προτείνεται μια νέα αρχιτεκτονική για το δίκτυο διασύνδεσης ενώ παράλληλα έχει υλοποιηθεί και ένας αλγόριθμος για την αποδοτική τοποθέτηση των επεξεργαστικών μονάδων σε αυτό το δίκτυο. Επίσης έχει μελετηθεί και η επίδραση μειωμένης μετάδοσης πληροφορίας σε κάθε επανάληψη του αλγορίθμου αποκωδικοποίησης.Το περιβάλλον που χρησιμοποιήθηκε για την εξομοίωση και την παραγωγή των αποτελεσμάτων είναι η πλατφόρμα της Matlab. Η προτεινόμενη αρχιτεκτονική υλοποιήθηκε και εξομοιώθηκε σε κώδικες LDPC που αποτελούν μέρος του προτύπου DVB - S2 (Digital Video Broadcasting).Το συγκεκριμένο πρότυπο, εκτός των άλλων, καθορίζει και τις προδιαγραφές των κωδίκων LDPC που χρησιμοποιούνται κατά την κωδικοποίηση και αποκωδικοποίηση δεδομένων σε συστήματα ψηφιακής δορυφορικής μετάδοσης. Τα αποτελέσματα των εξομοιώσεων σχετίζονται με την πολυπλοκότητα της προτεινόμενης αρχιτεκτονικής σε υλικό αλλά και της απόδοσης (ταχύτητα αποκωδικοποίησης) και συγκρίνονται με την βασική πλήρως παράλληλη αρχιτεκτονική. / One of the main disadvantages of the design and implementation of LDPC decoders is the great complexity presented at the hardware level because of the internal interconnection of processing units. The fully parallel architecture that achieves the maximum level of parallelism and hence is very efficient in terms of speed decoding is not used often because of the hardware complexity due to the multiple interface circuits required. This MSc thesis proposes a new architecture for the network interface and also introduces an algorithm for the efficient placement of the processing units in this network. In addition to that, a modified version of the decoding algorithm has been implemented. The relative advantage of this algorithm is that in each iteration only a percentage of the processing units exchange information with each other. That approach further reduces the hardware complexity and power usage. The environment used to simulate and produce the results is Matlab. The proposed architecture is implemented and simulated in LDPC codes that are part of the standard DVB - S2 (Digital Video Broadcasting). This standard, among other things, determines the specifications of the LDPC codes used in the channel encoding and decoding process in digital satellite transmission systems. The results of the simulations related to the complexity of the proposed architecture in hardware and performance (decoding speed) are compared with the fully parallel architecture.
70

Simulace přenosu DVB-C a DVB-C2 a jejich vzájemné porovnání / Simulation of the DVB-C and DVB-C2 transmission and their comparison

Cibulka, Tomáš January 2013 (has links)
This Master thesis deals with description, analysis and simulation of standards of digital video broadcasting DVB-C and DVB-C2. There is described mainly the transmission system, channel coding, type of modulation and OFDM symbols generation. Furthermore, channel models, used for the exploring of their performances are described too. There was created an application with a graphical interface in MATLAB, which simulates transmission in DVB-C2. Based on simulations there are compared influences of each settings on bit error rate of data transmission for both standards. Finally, obtained simulation results are compared with theoretical values.

Page generated in 0.0459 seconds