• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation on Interleaved Boost Converters and Applications

Wang, Chuanyun 25 August 2009 (has links)
With the rapid evolving IT technologies, today, the power factor correction (PFC) design is facing many challenges, such as power scalability, high entire-load-range efficiency, and high power density. Power scalability is a very desirable and cost-effective approach in the PFC design in order to keep up with servers' growing power requirements. Higher power density can eventually reduce the converter cost and allows for accommodating more equipment in the existing infrastructures. Driven strongly by economic and environmental concerns, high entire-load-range efficiency is more and more required by various organizations and programs, such as the U.S. Energy Star, Climate Savers, and German Blue Angel. Today, the existing boost PFC is reaching its limitations to meet these challenges simultaneously. Using the cutting-edge semiconductor devices, further efficiency improvement at light load is still needed. There are limited approaches available for increasing the power density due to the large EMI filter and inductor size. Interleaved multi-channel boost PFC is a promising candidate to meet those challenges, but the interleaved boost converter is a less explored area. On the other hand, the multi-channel interleaved buck converter for the VR application has been intensively studied and thoroughly explored. One basic approach of this study is trying to extend the existing knowledge and techniques obtained from multiphase buck converters to the multi-channel interleaved boost converters since there are similarities existed between the multi-phase buck and the multi-channel boost converters. The existing studies about the interleaving impact on the EMI filter design are based on the time domain ripple cancellation effect. This approach is good enough for most of the filter designs. However, unlike the conventional filter designs, the EMI filter design is a specification related process. Both the EMI standard and the EMI measurement are based on the frequency domain spectrum. Limited by the existing analysis approaches, it is difficult to provide a clear picture about how exactly the multi-channel interleaving will impact the EMI filter design. The interleaving impact on the Common Mode (CM) noise also has not been studied in any existing literatures for the same reason. In this study, the frequency domain analysis method was adopted. With the double Fourier integral transformation, a closed-form expression of all the harmonics of the noise sources can be obtained. With all the detailed phase relationship of the switching frequency harmonics and all the side band harmonics, the multi-channel interleaving impact on both the differential mode (DM) and CM filter design can be clearly understood and summarized. According to the design curves provided, the EMI filter size can be effectively reduced by properly choosing the interleaving channel number and the switching frequency. The multi-channel interleaving impact on the output capacitor current ripple is also studied and summarized in this dissertation. It should be pointed out that interleaving only reduces the total input and output current ripples; the inductor current in each channel still has large ripple if small inductance is used. Similar to the multi-phase buck converter, coupling inductors result in different equivalent inductances for input current ripple and inductor current ripple for boost converters. Keeping the inductor current ripple magnitude the same, inverse coupling inductors between the interleaved channels can reduce the inductor size. However, the DM filter size is increased due to larger input current. Based on the investigation on the total magnetic component weight, inverse coupling inductor can reduce the total magnetic component weight. The reduction is more pronounced for lower switching frequency design when the inductor size is dominating among the total magnetic components. Based on the harmonic cancellation, and with all the detailed phase relationship of the switching frequency harmonics and all the side band harmonics, a novel phase angle control method is proposed to maximize the reduction of the EMI filter. For example, in a 2-channel interleaved PFC, just by changing the interleaving scheme to 90 degree phase shift, 39% total volume reduction of the EMI filter can be achieved. The proposed phase angle controlled multi-channel PFC is experimentally demonstrated and verified on a digital controlled 4-channel PFC. The phase angle control method proposed in the multi-channel boost converter can be applied back to the multi-phase buck converter as well. The harmonic cancellation principle will be the same as the multi-channel boost converter. The same benefits can be obtained when the requirement is defined in the frequency domain, e.g. the EMI Standard. The interleaved multi-channel configuration makes it possible to implement the phase-shedding to improve the PFC light load efficiency. By decreasing the number of active channels according to the load, the PFC light load efficiency can be optimized. However, shedding phases can reduce the ripple cancellation effect as well, which will result in the EMI noise increase and losing the benefit on the EMI filter. By applying the proposed phase-shedding with phase angle control strategy, the phase shedding impact on the EMI filter design can be minimized. The light load efficiency can be improved without compromising the EMI filter size. Then, adaptive frequency controlled PFC is proposed to further improve the PFC light load efficiency. The proposed light load efficiency improvement strategies are combined and implemented on the platform of the digital controlled 4-channel PFC. The benefit of improving the light load efficiency is experimentally verified. The EMI performance is also evaluated with the EMI measurement results obtained from the PFC prototype. Following the same approach explored, the benefits of interleaved boost converter can be further extended other applications, such as the boost converter in the Hybrid Electric Vehicles (HEV) and photovoltaic (PV) system. / Ph. D.
2

Viterbi Decoded Linear Block Codes for Narrowband and Wideband Wireless Communication Over Mobile Fading Channels

Staphorst, Leonard 08 August 2005 (has links)
Since the frantic race towards the Shannon bound [1] commenced in the early 1950’s, linear block codes have become integral components of most digital communication systems. Both binary and non-binary linear block codes have proven themselves as formidable adversaries against the impediments presented by wireless communication channels. However, prior to the landmark 1974 paper [2] by Bahl et al. on the optimal Maximum a-Posteriori Probability (MAP) trellis decoding of linear block codes, practical linear block code decoding schemes were not only based on suboptimal hard decision algorithms, but also code-specific in most instances. In 1978 Wolf expedited the work of Bahl et al. by demonstrating the applicability of a block-wise Viterbi Algorithm (VA) to Bahl-Cocke-Jelinek-Raviv (BCJR) trellis structures as a generic optimal soft decision Maximum-Likelihood (ML) trellis decoding solution for linear block codes [3]. This study, largely motivated by code implementers’ ongoing search for generic linear block code decoding algorithms, builds on the foundations established by Bahl, Wolf and other contributing researchers by thoroughly evaluating the VA decoding of popular binary and non-binary linear block codes on realistic narrowband and wideband digital communication platforms in lifelike mobile environments. Ideally, generic linear block code decoding algorithms must not only be modest in terms of computational complexity, but they must also be channel aware. Such universal algorithms will undoubtedly be integrated into most channel coding subsystems that adapt to changing mobile channel conditions, such as the adaptive channel coding schemes of current Enhanced Data Rates for GSM Evolution (EDGE), 3rd Generation (3G) and Beyond 3G (B3G) systems, as well as future 4th Generation (4G) systems. In this study classic BCJR linear block code trellis construction is annotated and applied to contemporary binary and non-binary linear block codes. Since BCJR trellis structures are inherently sizable and intricate, rudimentary trellis complexity calculation and reduction algorithms are also presented and demonstrated. The block-wise VA for BCJR trellis structures, initially introduced by Wolf in [3], is revisited and improved to incorporate Channel State Information (CSI) during its ML decoding efforts. In order to accurately appraise the Bit-Error-Rate (BER) performances of VA decoded linear block codes in authentic wireless communication environments, Additive White Gaussian Noise (AWGN), flat fading and multi-user multipath fading simulation platforms were constructed. Included in this task was the development of baseband complex flat and multipath fading channel simulator models, capable of reproducing the physical attributes of realistic mobile fading channels. Furthermore, a complex Quadrature Phase Shift Keying (QPSK) system were employed as the narrowband communication link of choice for the AWGN and flat fading channel performance evaluation platforms. The versatile B3G multi-user multipath fading simulation platform, however, was constructed using a wideband RAKE receiver-based complex Direct Sequence Spread Spectrum Multiple Access (DS/SSMA) communication system that supports unfiltered and filtered Complex Spreading Sequences (CSS). This wideband platform is not only capable of analysing the influence of frequency selective fading on the BER performances of VA decoded linear block codes, but also the influence of the Multi-User Interference (MUI) created by other users active in the Code Division Multiple Access (CDMA) system. CSS families considered during this study include Zadoff-Chu (ZC) [4, 5], Quadriphase (QPH) [6], Double Sideband (DSB) Constant Envelope Linearly Interpolated Root-of- Unity (CE-LI-RU) filtered Generalised Chirp-like (GCL) [4, 7-9] and Analytical Bandlimited Complex (ABC) [7, 10] sequences. Numerous simulated BER performance curves, obtained using the AWGN, flat fading and multi-user multipath fading channel performance evaluation platforms, are presented in this study for various important binary and non-binary linear block code classes, all decoded using the VA. Binary linear block codes examined include Hamming and Bose-Chaudhuri-Hocquenghem (BCH) codes, whereas popular burst error correcting non-binary Reed-Solomon (RS) codes receive special attention. Furthermore, a simple cyclic binary linear block code is used to validate the viability of employing the reduced trellis structures produced by the proposed trellis complexity reduction algorithm. The simulated BER performance results shed light on the error correction capabilities of these VA decoded linear block codes when influenced by detrimental channel effects, including AWGN, Doppler spreading, diminished Line-of-Sight (LOS) signal strength, multipath propagation and MUI. It also investigates the impact of other pertinent communication system configuration alternatives, including channel interleaving, code puncturing, the quality of the CSI available during VA decoding, RAKE diversity combining approaches and CSS correlation characteristics. From these simulated results it can not only be gathered that the VA is an effective generic optimal soft input ML decoder for both binary and non-binary linear block codes, but also that the inclusion of CSI during VA metric calculations can fortify the BER performances of such codes beyond that attainable by classic ML decoding algorithms. / Dissertation (MEng(Electronic))--University of Pretoria, 2006. / Electrical, Electronic and Computer Engineering / unrestricted

Page generated in 0.1038 seconds