Spelling suggestions: "subject:"channel modelling"" "subject:"bhannel modelling""
1 |
An investigation into the mechanisms of compound meandering channel flowGreenhill, Rosemary Kate January 1992 (has links)
No description available.
|
2 |
A speech coder design for land mobile radio communicationsWong, Wing-Tak Kenneth January 1989 (has links)
No description available.
|
3 |
BLIND EQUALIZATION WITH LDPC CODE: TO QUASIERROR FREE TRANSMISSIONS IN TELEMETRYBlanc, Grégory, Skrzypczak, Alexandre, Pierozak, Jean-Guy 11 1900 (has links)
In a telemetry system, it has been frequently proved that multipath channels and transmission
noise are the most critical sources of distortion. While equalization allows a strong limitation of
the multipath effects, the noise impact can be efficiently reduced if forward error correction is
used. This paper proves that the combination of blind equalization and a powerful FEC like
LDPC strongly improves bit error rates for the SOQPSK modulation. We also prove that a LDPC
code is able to fully correct the residual errors that may persist at the equalizer output. In other
terms, the combination of equalization and LDPC code enables quasi-error free transmissions in
various channel scenarios that represent the various phases of a telemetry mission.
|
4 |
Combining a Reed-Solomon Block Code with a Blind Equalizer: Synchronization and Bit Error Rate PerformanceSkrzypczak, Alexandre, Blanc, Grégory, Le Bournault, Tangi 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / The performance of telemetry systems may be strongly affected by diverse sources of perturbations. Among them, multipath channels and transmission noise are the most critical. While the effects due to the multipath channels can be attenuated thanks to equalization, the effects of the noise are limited if forward error correction is used. This paper first proves that the combination of blind equalization and forward error correction can strongly improve bit error rates. The other objective of the paper is to show that reasonably powerful codes like Reed-Solomon codes are sufficient to enable quasi-error free transmissions in a large majority of propagation channel scenarios.
|
5 |
MIMO channel modelling for indoor wireless communicationsMaharaj, Bodhaswar Tikanath Jugpershad 29 July 2008 (has links)
This thesis investigates multiple-input-multiple-output (MIMO) channel modelling for a wideband indoor environment. Initially the theoretical basis of geometric modelling for a typical indoor environment is looked at, and a space-time model is formulated. The transmit and receive antenna correlation is then separated and is expressed in terms of antenna element spacing, the scattering parameter, mean angle of arrival and number of antenna elements employed. These parameters are used to analyze their effect on the capacity for this environment. Then the wideband indoor channel operating at center frequencies of 2.4 GHz and 5.2 GHz is investigated. The concept of MIMO frequency scaling is introduced and applied to the data obtained in the measurement campaign undertaken at the University of Pretoria. Issues of frequency scaling of capacity, spatial correlation and the joint RX/TX double direction channel response for this indoor environment are investigated. The maximum entropy (ME) approach to MIMO channel modelling is investigated and a new basis is developed for the determination of the covariance matrix when only the RX/TX covariance is known. Finally, results comparing this model with the established Kronecker model and its application for the joint RX/TX spatial power spectra, using a beamformer, are evaluated. Conclusions are then drawn and future research opportunities are highlighted. / Thesis (PhD)--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / unrestricted
|
6 |
Fundamental Molecular Communication ModellingBriantceva, Nadezhda 25 August 2020 (has links)
As traditional communication technology we use in our day-to-day life reaches its limitations, the international community searches for new methods to communicate information. One such novel approach is the so-called molecular communication system. During the last few decades, molecular communication systems become more and more popular. The main difference between traditional communication and molecular communication systems is that in the latter, information transfer occurs through chemical means, most often between microorganisms. This process already happens all around us naturally, for example, in the human body. Even though the molecular communication topic is attractive to researchers, and a lot of theoretical results are available - one cannot claim the same about the practical use of molecular communication. As for experimental results, a few studies have been done on the macroscale, but investigations at the micro- and nanoscale ranges are still lacking because they are a challenging task. In this work, a self-contained introduction of the underlying theory of molecular communication is provided, which includes knowledge from different areas such as biology, chemistry, communication theory, and applied mathematics. Two numerical methods are implemented for three well-studied partial differential equations of the MC field where advection, diffusion, and the reaction are taken into account. Numerical results for test cases in one and three dimensions are presented and discussed in detail. Conclusions and essential analytical and numerical future directions are then drawn.
|
7 |
Implications of potassium channel heterogeneity for model vestibulo-ocular reflex response fidelityMcGuinness, James January 2014 (has links)
The Vestibulo-Ocular Reflex (VOR) produces compensatory eye movements in response to head and body rotations movements, over a wide range of frequencies and in a variety of dimensions. The individual components of the VOR are separated into parallel pathways, each dealing with rotations or movements in individual planes or axes. The Horizontal VOR (hVOR) compensates for eye movements in the Horizontal plane, and comprises a linear and non-linear pathway. The linear pathway of the hVOR provides fast and accurate compensation for rotations, the response being produced through 3-neuron arc, producing a direct translation of detected head velocity to compensatory eye velocity. However, single neurons involved in the middle stage of this 3-neuron arc cannot account for the wide frequency over which the reflex compensates, and the response is produced through the population response of the Medial Vestibular Nucleus (MVN) neurons involved. Population Heterogeneity likely plays a role in the production of high fidelity population response, especially for high frequency rotations. Here we present evidence that, in populations of bio-physical compartmental models of the MVN neurons involved, Heterogeneity across the population, in the form of diverse spontaneous firing rates, improves the response fidelity of the population over Homogeneous populations. Further, we show that the specific intrinsic membrane properties that give rise to this Heterogeneity may be the diversity of certain slow voltage activated Potassium conductances of the neurons. We show that Heterogeneous populations perform significantly better than Homogeneous populations, for a wide range of input amplitudes and frequencies, producing a much higher fidelity response. We propose that variance of Potassium conductances provides a plausible biological means by which Heterogeneity arises, and that the Heterogeneity plays an important functional role in MVN neuron population responses. We discuss our findings in relation to the specific mechanism of Desynchronisation through which the benfits of Heterogeneity may arise, and place those findings in the context of previous work on Heterogeneity both in general neural processing, and the VOR in particular. Interesting findings regarding the emergence of phase leads are also discussed, as well as suggestions for future work, looking further at Heterogeneity of MVN neuron populations.
|
8 |
Space-Time Coding and Space-Time Channel Modelling for Wireless CommunicationsLamahewa, Tharaka Anuradha, tharaka.lamahewa@anu.edu.au January 2007 (has links)
In this thesis we investigate the effects of the physical
constraints such as antenna aperture size, antenna geometry and
non-isotropic scattering distribution parameters (angle of
arrival/departure and angular spread) on the performance of coherent
and non-coherent space-time coded wireless communication systems.
First, we derive analytical expressions for the exact pairwise error
probability (PEP) and PEP upper-bound of coherent and non-coherent
space-time coded systems operating over spatially correlated fading
channels using a moment-generating function-based approach. These
analytical expressions account for antenna spacing, antenna
geometries and scattering distribution models. Using these new PEP
expressions, the degree of the effect of antenna spacing, antenna
geometry and angular spread is quantified on the diversity advantage
(robustness) given by a space-time code. It is shown that the number
of antennas that can be employed in a fixed antenna aperture without
diminishing the diversity advantage of a space-time code is
determined by the size of the antenna aperture, antenna geometry and
the richness of the scattering environment.
¶
In realistic channel environments the performance of space-time
coded multiple-input multiple output (MIMO) systems is significantly
reduced due to non-ideal antenna placement and non-isotropic
scattering. In this thesis, by exploiting the spatial dimension of a
MIMO channel we introduce the novel use of linear spatial precoding
(or power-loading) based on fixed and known parameters of MIMO
channels to ameliorate the effects of non-ideal antenna placement on
the performance of coherent and non-coherent space-time codes. The
spatial precoder virtually arranges the antennas into an optimal
configuration so that the spatial correlation between all antenna
elements is minimum. With this design, the precoder is fixed for
fixed antenna placement and the transmitter does not require any
feedback of channel state information (partial or full) from the
receiver. We also derive precoding schemes to exploit non-isotropic
scattering distribution parameters of the scattering channel to
improve the performance of space-time codes applied on MIMO systems
in non-isotropic scattering environments. However, these schemes
require the receiver to estimate the non-isotropic parameters and
feed them back to the transmitter.
¶
The idea of precoding based on fixed parameters of MIMO channels is
extended to maximize the capacity of spatially constrained dense
antenna arrays. It is shown that the theoretical maximum capacity
available from a fixed region of space can be achieved by power
loading based on previously unutilized channel state information
contained in the antenna locations. We analyzed the correlation
between different modal orders generated at the transmitter region
due to spatially constrained antenna arrays in non-isotropic
scattering environments, and showed that adjacent modes contribute
to higher correlation at the transmitter region. Based on this
result, a power loading scheme is proposed which reduces the effects
of correlation between adjacent modes at the transmitter region by
nulling power onto adjacent transmit modes.
¶
Furthermore, in this thesis a general space-time channel model for
down-link transmission in a mobile multiple antenna communication
system is developed. The model incorporates deterministic
quantities such as physical antenna positions and the motion of the
mobile unit (velocity and the direction), and random quantities to
capture random scattering environment modeled using a bi-angular
power distribution and, in the simplest case, the covariance between
transmit and receive angles which captures statistical
interdependency. The Kronecker model is shown to be a special case
when the power distribution is separable and is shown to
overestimate MIMO system performance whenever there is more than one
scattering cluster. Expressions for space-time cross correlations
and space-frequency cross spectra are given for a number of
scattering distributions using Gaussian and Morgenstern's family of
multivariate distributions. These new expressions extend the
classical Jake's and Clarke's correlation models to general
non-isotropic scattering environments.
|
9 |
Radio frequency channel characterization for energy harvesting in factory environmentsAdegoke, Elijah January 2018 (has links)
This thesis presents ambient energy data obtained from a measurement campaign carried out at an automobile plant. At the automobile plant, ambient light, ambient temperature and ambient radio frequency were measured during the day time over two days. The measurement results showed that ambient light generated the highest DC power. For plant and operation managers at the automobile plant, the measurement data can be used in system design considerations for future energy harvesting wireless sensor nodes at the plant. In addition, wideband measurements obtained from a machine workshop are presented in this thesis. The power delay profile of the wireless channel was obtained by using a frequency domain channel sounding technique. The measurements were compared with an equivalent ray tracing model in order to validate the suitability of the commercial propagation software used in this work. Furthermore, a novel technique for mathematically recreating the time dispersion created by factory inventory in a radio frequency channel is discussed. As a wireless receiver design parameter, delay spread characterizes the amplitude and phase response of the radio channel. In wireless sensor devices, this becomes paramount, as it determines the complexity of the receiver. In reality, it is sometimes difficult to obtain full detail floor plans of factories for deterministic modelling or carry out spot measurements during building construction. As a result, radio provision may be suboptimal. The method presented in this thesis is based on 3-D fractal geometry. By employing the fractal overlaying algorithm presented, metallic objects can be placed on a floor plan so as to obtain similar radio frequency channel effects. The environment created using the fractal approach was used to estimate the amount of energy a harvesting device can accumulate in a University machine workshop space.
|
10 |
Modelling and experimental analysis of frequency dependent MIMO channelsGarcía Ariza, Alexis Paolo 04 December 2009 (has links)
La integración de tecnologías de ulta-wideband, radio-cognitiva y MIMO representa una herramienta podersoa para mejorar la eficiencia espectral de los sistemas de comunicación inalámbricos. En esta dirección, nuevas estrategias para el modelado de canales MIMO y su caracterización se hacen necesarias si se desea investigar cómo la frecuencia central y el acho de banda afectan el desempeño de los sistemas MIMO. Investigaciones preliminares han enfocado menos atención en cómo estos parámetros afectan las características del canal MIMO. Se presenta una caracterización del canal MIMO en función de la frecuencia, abondándose puntos de vista experimentales y teóricos. Los problemas indicados tratan cinco áreas principales: medidas, post-procesado de datos, generación sintética del canal, estadística multivariable para datos y modelado del canal.
Se ha diseñado y validado un sistema de medida basado en un analizador vectorial de redes y se han ejecutado medidas entre 2 y 12 GHz en condiciones estáticas, tanto en línea de vista como no línea de vista. Se ha propuesto y validado un procedimiento confiable para post-procesado, generación sintética de canal y análisis experimental basado en medidas en el dominio de frecuencia. El procedimiento experimental se ha focalizado en matrices de transferencia del canal para casos no selectivos en frecuencia, estimándose además las matrices complejas de covarianza, aplicándose la factorización de Cholesky sobre ls CCM y obteniéndose finalmente matrices de coloreado del sistema. Se presenta un procedimiento de corrección para generación sintética del canal aplicado a casos MIMO de grandes dimensiones y cuando la CCM es indefinida. Este CP permite la factorización de Cholesky y de dichas CCM. Las características multivariables de los datos experimentales han sido investigadas, realizándose un test de normalidad compleja multivariable. / García Ariza, AP. (2009). Modelling and experimental analysis of frequency dependent MIMO channels [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/6563
|
Page generated in 0.2178 seconds