• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impulsive Control and Synchronization of Chaos-Generating-Systems with Applications to Secure Communication

Khadra, Anmar January 2004 (has links)
When two or more chaotic systems are coupled, they may exhibit synchronized chaotic oscillations. The synchronization of chaos is usually understood as the regime of chaotic oscillations in which the corresponding variables or coupled systems are equal to each other. This kind of synchronized chaos is most frequently observed in systems specifically designed to be able to produce this behaviour. In this thesis, one particular type of synchronization, called impulsive synchronization, is investigated and applied to low dimensional chaotic, hyperchaotic and spatiotemporal chaotic systems. This synchronization technique requires driving one chaotic system, called response system, by samples of the state variables of the other chaotic system, called drive system, at discrete moments. Equi-Lagrange stability and equi-attractivity in the large property of the synchronization error become our major concerns when discussing the dynamics of synchronization to guarantee the convergence of the error dynamics to zero. Sufficient conditions for equi-Lagrange stability and equi-attractivity in the large are obtained for the different types of chaos-generating systems used. The issue of robustness of synchronized chaotic oscillations with respect to parameter variations and time delay, is also addressed and investigated when dealing with impulsive synchronization of low dimensional chaotic and hyperchaotic systems. Due to the fact that it is impossible to design two identical chaotic systems and that transmission and sampling delays in impulsive synchronization are inevitable, robustness becomes a fundamental issue in the models considered. Therefore it is established, in this thesis, that under relatively large parameter perturbations and bounded delay, impulsive synchronization still shows very desired behaviour. In fact, criteria for robustness of this particular type of synchronization are derived for both cases, especially in the case of time delay, where sufficient conditions for the synchronization error to be equi-attractivity in the large, are derived and an upper bound on the delay terms is also obtained in terms of the other parameters of the systems involved. The theoretical results, described above, regarding impulsive synchronization, are reconfirmed numerically. This is done by analyzing the Lyapunov exponents of the error dynamics and by showing the simulations of the different models discussed in each case. The application of the theory of synchronization, in general, and impulsive synchronization, in particular, to communication security, is also presented in this thesis. A new impulsive cryptosystem, called induced-message cryptosystem, is proposed and its properties are investigated. It was established that this cryptosystem does not require the transmission of the encrypted signal but instead the impulses will carry the information needed for synchronization and for retrieving the message signal. Thus the security of transmission is increased and the time-frame congestion problem, discussed in the literature, is also solved. Several other impulsive cryptosystems are also proposed to accommodate more solutions to several security issues and to illustrate the different properties of impulsive synchronization. Finally, extending the applications of impulsive synchronization to employ spatiotemporal chaotic systems, generated by partial differential equations, is addressed. Several possible models implementing this approach are suggested in this thesis and few questions are raised towards possible future research work in this area.
2

Impulsive Control and Synchronization of Chaos-Generating-Systems with Applications to Secure Communication

Khadra, Anmar January 2004 (has links)
When two or more chaotic systems are coupled, they may exhibit synchronized chaotic oscillations. The synchronization of chaos is usually understood as the regime of chaotic oscillations in which the corresponding variables or coupled systems are equal to each other. This kind of synchronized chaos is most frequently observed in systems specifically designed to be able to produce this behaviour. In this thesis, one particular type of synchronization, called impulsive synchronization, is investigated and applied to low dimensional chaotic, hyperchaotic and spatiotemporal chaotic systems. This synchronization technique requires driving one chaotic system, called response system, by samples of the state variables of the other chaotic system, called drive system, at discrete moments. Equi-Lagrange stability and equi-attractivity in the large property of the synchronization error become our major concerns when discussing the dynamics of synchronization to guarantee the convergence of the error dynamics to zero. Sufficient conditions for equi-Lagrange stability and equi-attractivity in the large are obtained for the different types of chaos-generating systems used. The issue of robustness of synchronized chaotic oscillations with respect to parameter variations and time delay, is also addressed and investigated when dealing with impulsive synchronization of low dimensional chaotic and hyperchaotic systems. Due to the fact that it is impossible to design two identical chaotic systems and that transmission and sampling delays in impulsive synchronization are inevitable, robustness becomes a fundamental issue in the models considered. Therefore it is established, in this thesis, that under relatively large parameter perturbations and bounded delay, impulsive synchronization still shows very desired behaviour. In fact, criteria for robustness of this particular type of synchronization are derived for both cases, especially in the case of time delay, where sufficient conditions for the synchronization error to be equi-attractivity in the large, are derived and an upper bound on the delay terms is also obtained in terms of the other parameters of the systems involved. The theoretical results, described above, regarding impulsive synchronization, are reconfirmed numerically. This is done by analyzing the Lyapunov exponents of the error dynamics and by showing the simulations of the different models discussed in each case. The application of the theory of synchronization, in general, and impulsive synchronization, in particular, to communication security, is also presented in this thesis. A new impulsive cryptosystem, called induced-message cryptosystem, is proposed and its properties are investigated. It was established that this cryptosystem does not require the transmission of the encrypted signal but instead the impulses will carry the information needed for synchronization and for retrieving the message signal. Thus the security of transmission is increased and the time-frame congestion problem, discussed in the literature, is also solved. Several other impulsive cryptosystems are also proposed to accommodate more solutions to several security issues and to illustrate the different properties of impulsive synchronization. Finally, extending the applications of impulsive synchronization to employ spatiotemporal chaotic systems, generated by partial differential equations, is addressed. Several possible models implementing this approach are suggested in this thesis and few questions are raised towards possible future research work in this area.
3

Chaos synchronization and its application to secure communication

Zhang, Hongtao January 2010 (has links)
Chaos theory is well known as one of three revolutions in physical sciences in 20th-century, as one physicist called it: Relativity eliminated the Newtonian illusion of absolute space and time; quantum theory eliminated the Newtonian dream of a controllable measurable process; and chaos eliminates the Laplacian fantasy of deterministic predictability". Specially, when chaos synchronization was found in 1991, chaos theory becomes more and more attractive. Chaos has been widely applied to many scientific disciplines: mathematics, programming, microbiology, biology, computer science, economics, engineering, finance, philosophy, physics, politics, population dynamics, psychology, and robotics. One of most important engineering applications is secure communication because of the properties of random behaviours and sensitivity to initial conditions of chaos systems. Noise-like dynamical behaviours can be used to mask the original information in symmetric cryptography. Sensitivity to initial conditions and unpredictability make chaotic systems very suitable to construct one-way function in public-key cryptography. In chaos-based secure communication schemes, information signals are masked or modulated (encrypted) by chaotic signals at the transmitter and the resulting encrypted signals are sent to the corresponding receiver across a public channel (unsafe channel). Perfect chaos synchronization is usually expected to recover the original information signals. In other words, the recovery of the information signals requires the receiver's own copy of the chaotic signals which are synchronized with the transmitter ones. Thus, chaos synchronization is the key technique throughout this whole process. Due to the difficulties of generating and synchronizing chaotic systems and the limit of digital computer precision, there exist many challenges in chaos-based secure communication. In this thesis, we try to solve chaos generation and chaos synchronization problems. Starting from designing chaotic and hyperchaotic system by first-order delay differential equation, we present a family of novel cell attractors with multiple positive Lyapunov exponents. Compared with previously reported hyperchaos systems with complex mathematic structure (more than 3 dimensions), our system is relatively simple while its dynamical behaviours are very complicated. We present a systemic parameter control method to adjust the number of positive Lyapunov exponents, which is an index of chaos degree. Furthermore, we develop a delay feedback controller and apply it to Chen system to generate multi-scroll attractors. It can be generalized to Chua system, Lorenz system, Jerk equation, etc. Since chaos synchronization is the critical technique in chaos-based secure communication, we present corresponding impulsive synchronization criteria to guarantee that the receiver can generate the same chaotic signals at the receiver when time delay and uncertainty emerge in the transmission process. Aiming at the weakness of general impulsive synchronization scheme, i.e., there always exists an upper boundary to limit impulsive intervals during the synchronization process, we design a novel synchronization scheme, intermittent impulsive synchronization scheme (IISS). IISS can not only be flexibly applied to the scenario where the control window is restricted but also improve the security of chaos-based secure communication via reducing the control window width and decreasing the redundancy of synchronization signals. Finally, we propose chaos-based public-key cryptography algorithms which can be used to encrypt synchronization signals and guarantee their security across the public channel.
4

Chaos synchronization and its application to secure communication

Zhang, Hongtao January 2010 (has links)
Chaos theory is well known as one of three revolutions in physical sciences in 20th-century, as one physicist called it: Relativity eliminated the Newtonian illusion of absolute space and time; quantum theory eliminated the Newtonian dream of a controllable measurable process; and chaos eliminates the Laplacian fantasy of deterministic predictability". Specially, when chaos synchronization was found in 1991, chaos theory becomes more and more attractive. Chaos has been widely applied to many scientific disciplines: mathematics, programming, microbiology, biology, computer science, economics, engineering, finance, philosophy, physics, politics, population dynamics, psychology, and robotics. One of most important engineering applications is secure communication because of the properties of random behaviours and sensitivity to initial conditions of chaos systems. Noise-like dynamical behaviours can be used to mask the original information in symmetric cryptography. Sensitivity to initial conditions and unpredictability make chaotic systems very suitable to construct one-way function in public-key cryptography. In chaos-based secure communication schemes, information signals are masked or modulated (encrypted) by chaotic signals at the transmitter and the resulting encrypted signals are sent to the corresponding receiver across a public channel (unsafe channel). Perfect chaos synchronization is usually expected to recover the original information signals. In other words, the recovery of the information signals requires the receiver's own copy of the chaotic signals which are synchronized with the transmitter ones. Thus, chaos synchronization is the key technique throughout this whole process. Due to the difficulties of generating and synchronizing chaotic systems and the limit of digital computer precision, there exist many challenges in chaos-based secure communication. In this thesis, we try to solve chaos generation and chaos synchronization problems. Starting from designing chaotic and hyperchaotic system by first-order delay differential equation, we present a family of novel cell attractors with multiple positive Lyapunov exponents. Compared with previously reported hyperchaos systems with complex mathematic structure (more than 3 dimensions), our system is relatively simple while its dynamical behaviours are very complicated. We present a systemic parameter control method to adjust the number of positive Lyapunov exponents, which is an index of chaos degree. Furthermore, we develop a delay feedback controller and apply it to Chen system to generate multi-scroll attractors. It can be generalized to Chua system, Lorenz system, Jerk equation, etc. Since chaos synchronization is the critical technique in chaos-based secure communication, we present corresponding impulsive synchronization criteria to guarantee that the receiver can generate the same chaotic signals at the receiver when time delay and uncertainty emerge in the transmission process. Aiming at the weakness of general impulsive synchronization scheme, i.e., there always exists an upper boundary to limit impulsive intervals during the synchronization process, we design a novel synchronization scheme, intermittent impulsive synchronization scheme (IISS). IISS can not only be flexibly applied to the scenario where the control window is restricted but also improve the security of chaos-based secure communication via reducing the control window width and decreasing the redundancy of synchronization signals. Finally, we propose chaos-based public-key cryptography algorithms which can be used to encrypt synchronization signals and guarantee their security across the public channel.
5

Verificação do sincronismo do acoplamento elétrico entre circuitos simulando o comportamento de um sistema mecânico partícula em caixa / Timing verification of the coupling between electric circuits simulating the behavior of a particle in a box system mechanic

Gonçalves, Cristhiane 03 February 2012 (has links)
A dinâmica de sistemas caóticos é uma área de pesquisa relativamente recente, diretamente relacionada com os campos da engenharia, física e matemática aplicada. A sincronização entre sistemas dinâmicos tem sido um tópico de pesquisa muito freqüente, abrangendo campos desde a mecânica de corpos celestiais até a física dos lasers. Entretanto, a maioria dos trabalhos da área concentra-se em simulações numéricas do comportamento de sistemas caóticos. Com o objetivo de verificar aplicações em engenharia do sincronismo entre circuitos, foi proposto o circuito eletrônico partícula em caixa, que é relativamente simples, se comparado com outros trabalhos na literatura. A originalidade deste trabalho consiste em verificar a robustez de alguns sistemas compostos de circuitos idênticos que simulam o comportamento de uma partícula em caixa em configurações mestre-escravo, em diversas topologias, explorando o sincronismo dos mesmos utilizando uma malha fechada de realimentação de erro. A robustez do acoplamento destes sistemas é estudada por meio de montagens experimentais e simulações numéricas. A observação da sua dinâmica permite sugerir aplicações na área de telecomunicações em multiplexação de sinais, acesso multiusuário e tecnologia CDMA (Code Division Multiple Access) / The dynamics of chaotic systems is a relatively new research area, directly related to the fields of engineering, physics and applied mathematics. Synchronization between dynamic systems has been a very frequent topic of research, covering fields ranging from mechanics of celestial bodies to the physics of lasers. However, most of the work area focuses on numerical simulations of the behavior of chaotic systems. In order to verify engineering applications of synchronism of circuits, it was proposed a particle in a box electronic circuit, which is relatively simple if compared to other studies. The originality of this work is to verify the robustness of some systems composed of identical circuits that simulate the behavior of a particle in a box in master-slave configurations in several topologies, exploring their synchronism using a closed loop feedback error. The strength of the coupling of these systems is studied through numerical simulations and experimental setups. The observation of this dynamics allows us to suggest applications in telecommunications in signal multiplexing, multiuser access and CDMA (Code Division Multiple Access)
6

Verificação do sincronismo do acoplamento elétrico entre circuitos simulando o comportamento de um sistema mecânico partícula em caixa / Timing verification of the coupling between electric circuits simulating the behavior of a particle in a box system mechanic

Cristhiane Gonçalves 03 February 2012 (has links)
A dinâmica de sistemas caóticos é uma área de pesquisa relativamente recente, diretamente relacionada com os campos da engenharia, física e matemática aplicada. A sincronização entre sistemas dinâmicos tem sido um tópico de pesquisa muito freqüente, abrangendo campos desde a mecânica de corpos celestiais até a física dos lasers. Entretanto, a maioria dos trabalhos da área concentra-se em simulações numéricas do comportamento de sistemas caóticos. Com o objetivo de verificar aplicações em engenharia do sincronismo entre circuitos, foi proposto o circuito eletrônico partícula em caixa, que é relativamente simples, se comparado com outros trabalhos na literatura. A originalidade deste trabalho consiste em verificar a robustez de alguns sistemas compostos de circuitos idênticos que simulam o comportamento de uma partícula em caixa em configurações mestre-escravo, em diversas topologias, explorando o sincronismo dos mesmos utilizando uma malha fechada de realimentação de erro. A robustez do acoplamento destes sistemas é estudada por meio de montagens experimentais e simulações numéricas. A observação da sua dinâmica permite sugerir aplicações na área de telecomunicações em multiplexação de sinais, acesso multiusuário e tecnologia CDMA (Code Division Multiple Access) / The dynamics of chaotic systems is a relatively new research area, directly related to the fields of engineering, physics and applied mathematics. Synchronization between dynamic systems has been a very frequent topic of research, covering fields ranging from mechanics of celestial bodies to the physics of lasers. However, most of the work area focuses on numerical simulations of the behavior of chaotic systems. In order to verify engineering applications of synchronism of circuits, it was proposed a particle in a box electronic circuit, which is relatively simple if compared to other studies. The originality of this work is to verify the robustness of some systems composed of identical circuits that simulate the behavior of a particle in a box in master-slave configurations in several topologies, exploring their synchronism using a closed loop feedback error. The strength of the coupling of these systems is studied through numerical simulations and experimental setups. The observation of this dynamics allows us to suggest applications in telecommunications in signal multiplexing, multiuser access and CDMA (Code Division Multiple Access)
7

Computational Intelligence and Complexity Measures for Chaotic Information Processing

Arasteh, Davoud 16 May 2008 (has links)
This dissertation investigates the application of computational intelligence methods in the analysis of nonlinear chaotic systems in the framework of many known and newly designed complex systems. Parallel comparisons are made between these methods. This provides insight into the difficult challenges facing nonlinear systems characterization and aids in developing a generalized algorithm in computing algorithmic complexity measures, Lyapunov exponents, information dimension and topological entropy. These metrics are implemented to characterize the dynamic patterns of discrete and continuous systems. These metrics make it possible to distinguish order from disorder in these systems. Steps required for computing Lyapunov exponents with a reorthonormalization method and a group theory approach are formalized. Procedures for implementing computational algorithms are designed and numerical results for each system are presented. The advance-time sampling technique is designed to overcome the scarcity of phase space samples and the buffer overflow problem in algorithmic complexity measure estimation in slow dynamics feedback-controlled systems. It is proved analytically and tested numerically that for a quasiperiodic system like a Fibonacci map, complexity grows logarithmically with the evolutionary length of the data block. It is concluded that a normalized algorithmic complexity measure can be used as a system classifier. This quantity turns out to be one for random sequences and a non-zero value less than one for chaotic sequences. For periodic and quasi-periodic responses, as data strings grow their normalized complexity approaches zero, while a faster deceasing rate is observed for periodic responses. Algorithmic complexity analysis is performed on a class of certain rate convolutional encoders. The degree of diffusion in random-like patterns is measured. Simulation evidence indicates that algorithmic complexity associated with a particular class of 1/n-rate code increases with the increase of the encoder constraint length. This occurs in parallel with the increase of error correcting capacity of the decoder. Comparing groups of rate-1/n convolutional encoders, it is observed that as the encoder rate decreases from 1/2 to 1/7, the encoded data sequence manifests smaller algorithmic complexity with a larger free distance value.

Page generated in 0.1163 seconds