• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 5
  • 3
  • 3
  • 1
  • Tagged with
  • 32
  • 32
  • 15
  • 13
  • 12
  • 12
  • 11
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Le désordre des itérations chaotiques et leur utilité en sécurité informatique

Guyeux, Christophe 13 December 2010 (has links) (PDF)
Les itérations chaotiques, un outil issu des mathématiques discrètes, sont pour la première fois étudiées pour obtenir de la divergence et du désordre. Après avoir utilisé les mathématiques discrètes pour en déduire des situations de non convergence, ces itérations sont modélisées sous la forme d'un système dynamique et sont étudiées topologiquement dans le cadre de la théorie mathématique du chaos. Nous prouvons que leur adjectif " chaotique " a été bien choisi: ces itérations sont du chaos aux sens de Devaney, Li-Yorke, l'expansivité, l'entropie topologique et l'exposant de Lyapunov, etc. Ces propriétés ayant été établies pour une topologie autre que la topologie de l'ordre, les conséquences de ce choix sont discutées. Nous montrons alors que ces itérations chaotiques peuvent être portées telles quelles sur ordinateur, sans perte de propriétés, et qu'il est possible de contourner le problème de la finitude des ordinateurs pour obtenir des programmes aux comportements prouvés chaotiques selon Devaney, etc. Cette manière de faire est respectée pour générer un algorithme de tatouage numérique et une fonction de hachage chaotiques au sens le plus fort qui soit. A chaque fois, l'intérêt d'être dans le cadre de la théorie mathématique du chaos est justifié, les propriétés à respecter sont choisies suivant les objectifs visés, et l'objet ainsi construit est évalué. Une notion de sécurité pour la stéganographie est introduite, pour combler l'absence d'outil permettant d'estimer la résistance d'un schéma de dissimulation d'information face à certaines catégories d'attaques. Enfin, deux solutions au problème de l'agrégation sécurisée des données dans les réseaux de capteurs sans fil sont proposées.
32

Apprentissage de nouveaux comportements: vers le développement épigénétique d'un robot autonome.

Lagarde, Matthieu, Gaussier, Philippe, Andry, Pierre 13 July 2010 (has links) (PDF)
La problématique de l'apprentissage de comportements sur un robot autonome soulève de nombreuses questions liées au contrôle moteur, à l'encodage du comportement, aux stratégies comportementales et à la sélection de l'action. Utiliser une approche développementale présente un intérêt tout particulier dans le cadre de la robotique autonome. Le comportement du robot repose sur des mécanismes de bas niveau dont les interactions permettent de faire émerger des comportements plus complexes. Le robot ne possède pas d'informations a priori sur ses caractéristiques physiques ou sur l'environnement, il doit apprendre sa propre dynamique sensori-motrice. J'ai débuté ma thèse par l'étude d'un modèle d'imitation bas niveau. Du point de vue du développement, l'imitation est présente dès la naissance et accompagne, sous de multiples formes, le développement du jeune enfant. Elle présente une fonction d'apprentissage et se révèle alors être un atout en terme de temps d'acquisition de comportements, ainsi qu'une fonction de communication participant à l'amorce et au maintien d'interactions non verbales et naturelles. De plus, même s'il n'y a pas de réelle intention d'imiter, l'observation d'un autre agent permet d'extraire suffisamment d'informations pour être capable de reproduire la tâche. Mon travail a donc dans un premier temps consisté à appliquer et tester un modèle développemental qui permet l'émergence de comportements d'imitation de bas niveau sur un robot autonome. Ce modèle est construit comme un homéostat qui tend à équilibrer par l'action ses informations perceptives frustres (détection du mouvement, détection de couleur, informations sur les angles des articulations d'un bras de robot). Ainsi, lorsqu'un humain bouge sa main dans le champ visuel du robot, l'ambigüité de la perception de ce dernier lui fait confondre la main de l'humain avec l'extrémité de son bras. De l'erreur qui en résulte émerge un comportement d'imitation immédiate des gestes de l'humain par action de l'homéostat. Bien sûr, un tel modèle implique que le robot soit capable d'associer au préalable les positions visuelles de son effecteur avec les informations proprioceptives de ses moteurs. Grace au comportement d'imitation, le robot réalise des mouvements qu'il peut ensuite apprendre pour construire des comportements plus complexes. Comment alors passer d'un simple mouvement à un geste plus complexe pouvant impliquer un objet ou un lieu ? Je propose une architecture qui permet à un robot d'apprendre un comportement sous forme de séquences temporelles complexes (avec répétition d'éléments) de mouvements. Deux modèles différents permettant l'apprentissage de séquences ont été développés et testés. Le premier apprend en ligne le timing de séquences temporelles simples. Ce modèle ne permettant pas d'apprendre des séquences complexes, le second modèle testé repose sur les propriétés d'un réservoir de dynamiques, il apprend en ligne des séquences complexes. A l'issue de ces travaux, une architecture apprenant le timing d'une séquence complexe a été proposée. Les tests en simulation et sur robot ont montré la nécessité d'ajouter un mécanisme de resynchronisation permettant de retrouver les bons états cachés pour permettre d'amorcer une séquence complexe par un état intermédiaire. Dans un troisième temps, mes travaux ont consisté à étudier comment deux stratégies sensorimotrices peuvent cohabiter dans le cadre d'une tâche de navigation. La première stratégie encode le comportement à partir d'informations spatiales alors que la seconde utilise des informations temporelles. Les deux architectures ont été testées indépendamment sur une même tâche. Ces deux stratégies ont ensuite été fusionnées et exécutées en parallèle. La fusion des réponses délivrées par les deux stratégies a été réalisée avec l'utilisation de champs de neurones dynamiques. Un mécanisme de "chunking" représentant l'état instantané du robot (le lieu courant avec l'action courante) permet de resynchroniser les dynamiques des séquences temporelles. En parallèle, un certain nombre de problème de programmation et de conception des réseaux de neurones sont apparus. En effet, nos réseaux peuvent compter plusieurs centaines de milliers de neurones. Il devient alors difficile de les exécuter sur une seule unité de calcul. Comment concevoir des architectures neuronales avec des contraintes de répartition de calcul, de communications réseau et de temps réel ? Une autre partie de mon travail a consisté à apporter des outils permettant la modélisation, la communication et l'exécution en temps réel d'architecture distribuées. Pour finir, dans le cadre du projet européen Feelix Growing, j'ai également participé à l'intégration de mes travaux avec ceux du laboratoire LASA de l'EPFL pour l'apprentissage de comportements complexes mêlant la navigation, le geste et l'objet. En conclusion, cette thèse m'a permis de développer à la fois de nouveaux modèles pour l'apprentissage de comportements - dans le temps et dans l'espace, de nouveaux outils pour maîtriser des réseaux de neurones de très grande taille et de discuter à travers les limitations du système actuel, les éléments importants pour un système de sélection de l'action.

Page generated in 0.0642 seconds